K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2023

a) Các vị trí so le trong, và đồng vị với \(\widehat{mAB}\) là:

\(\widehat{B_1};\widehat{APQ};\widehat{nPA}\)

b) Ta có: \(\widehat{B_1}=\widehat{mAB}=50^o\) (hai góc so le trong)

Mà: \(\widehat{B_1}+\widehat{B_2}=180^o\Rightarrow\widehat{B_2}=180^o-50^o=130^o\)

c) Ta có: \(\widehat{mAB}+\widehat{A_1}=180^o\Rightarrow\widehat{A_1}=180^o-\widehat{mAB}=180^o-50^o=130^o\)

Mà: \(\widehat{mAB}=\widehat{A_2}=50^o\)(hai góc đối đỉnh)

d) Ta có:

\(\widehat{APQ}+\widehat{PQB}=180^o\)

\(\Rightarrow\widehat{PQB}=180^o-\widehat{APQ}=180^o-110^o=70^o\)

20 tháng 8 2023

Kẻ Az//Bx//Dy

=> BAD = BAz + DAz = (180o - ABx) + (180o - ADy) = 30o + 60o = 90o

18 tháng 9 2023

Em thấy bạn Vuông nói đúng

Để chứng minh điều này, ta có thể chỉ ra trường hợp 2 góc bằng nhau nhưng không đối đỉnh.

Ví dụ:

\(\widehat {{O_1}} = \widehat {{O_2}}\) nhưng hai góc này không đối đỉnh

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Đoạn thẳng đơn vị được chia thành 6 phần bằng nhau, lấy một đoạn làm đơn vị mới, đơn vị mới bằng \(\frac{1}{6}\) đơn vị cũ.

Điểm A nằm bên phải gốc O và cách O một đoạn bằng 10 đơn vị mới. Do đó điểm A biểu diễn số hữu tỉ \(\frac{{10}}{6} = \frac{5}{3}\)

Điểm B nằm bên trái gốc O và cách O một đoạn bằng 5 đơn vị mới. Do đó điểm B biểu diễn số hữu tỉ \(\frac{{ - 5}}{6}\)

Điểm C nằm bên trái gốc O và cách O một đoạn bằng 13 đơn vị mới. Do đó điểm C biểu diễn số hữu tỉ \(\frac{{ - 13}}{6}\)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Xét 2 tam giác ABC và MNP có:

AB=MN (gt)

\(\widehat {BAC} = \widehat {NMP}\) (gt)

AC=MP (gt)

Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

2 góc kề bù trong hình là: góc mOt và tOn

Ta có:

\(\begin{array}{l}\widehat {mOt} + \widehat {tOn} = 180^\circ \\\widehat {mOt} = 180^\circ  - \widehat {tOn} = 180^\circ  - 60^\circ  = 120^\circ \end{array}\)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Xét tam giác MNP có:

\(\begin{array}{l}\widehat M + \widehat N + \widehat P = {180^o}\\ \Rightarrow \widehat M + {50^o} + {70^o} = {180^o}\\ \Rightarrow \widehat M = {60^o}\end{array}\)

Xét 2 tam giác ABC và MNP có:

AB=MN (gt)

\(\widehat {BAC} = \widehat {NMP} (=60^0)\)

AC=MP (gt)

Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Ta có: \(\frac{{33}}{{12}} = \frac{{165}}{{60}};\frac{{79}}{{30}} = \frac{{158}}{{60}}\)

Vì 158 < 165 nên \(\frac{{158}}{{60}} < \frac{{165}}{{60}}\) hay 0 < \(\frac{{79}}{{30}} < \frac{{33}}{{12}}\)

Vì \( - \frac{{25}}{{12}} <  - 1\) và \( - 1 <  - \frac{5}{6}\) nên \( - \frac{{25}}{{12}} <  - \frac{5}{6} < 0\)

Như vậy, độ cao của: 

Điểm D: \( - \frac{{25}}{{12}}\) (km)

Điểm E: \( - \frac{5}{6}\) (km)

Điểm C: 0 (km)

Điểm A: \(\frac{{79}}{{30}}\) (km)

Điểm B: \(\frac{{33}}{{12}}\) (km)

1
25 tháng 1 2024

\(5x=3y\Rightarrow x=\dfrac{3y}{5}\)

Thay \(x=\dfrac{3y}{5}\) vào biểu thức \(x^2-y^2=-4\) ta có:

\(\left(\dfrac{3y}{5}\right)^2-y^2=-4\)

\(\dfrac{9y^2}{25}-y^2=-4\)

\(-\dfrac{16}{25}y^2=-4\)

\(y^2=-\dfrac{4}{\dfrac{-16}{25}}\)

\(y^2=\dfrac{25}{4}\)

\(\Rightarrow y=-\dfrac{5}{2};y=\dfrac{5}{2}\)

*) \(y=-\dfrac{5}{2}\Rightarrow x=\dfrac{3.\left(-\dfrac{5}{2}\right)}{5}=-\dfrac{3}{2}\)

*) \(y=\dfrac{5}{2}\Rightarrow x=\dfrac{3.\dfrac{5}{2}}{5}=\dfrac{3}{2}\)

Vậy ta được các cặp giá trị \(\left(x;y\right)\) thỏa mãn:

\(\left(-\dfrac{3}{2};-\dfrac{5}{2}\right);\left(\dfrac{3}{2};\dfrac{5}{2}\right)\)