Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(3^x+3^{x+2}=810\)
\(\Leftrightarrow3^x\cdot10=810\)
\(\Leftrightarrow3^x=3^4\)
\(\Rightarrow x=4\)
3x + 3x + 2 = 810
=> 3x + 3x . 32 = 810
=> 3x ( 1 + 32 ) = 810
=> 3x . 10 = 810
=> 3x = 81
=> 3x = 34
=> x = 4
ấn vào đó rồi thấy có phân số là dc.
tick nha bn Kim Taeyeon
2.I3x - 1I + 1 = 5
<=>2.I3x - 1I = 5-1
<=>2.I3x - 1I =4
<=>I3x - 1I=2
=>Có 2 trường hợp
3x-1=2 =>3x=3 =>x=1
3x-1=-2 =>3x=1 =>x=1/3
Vậy x có 2 giá trị thỏa mãn là 1 và 1/3
Học tốt ^-^
giả sử a=0,1(23)=>10a=1,(23)=>1000a=123,(23)
=>1000a-10a=123-1=>a=122/990
giả sử a=0,1(23)=>10a=1,(23)=>1000a=123,(23)
=>1000a-10a=123-1=>a=122/990
vào cái 3 đấu chấm ở trên nhấn vào đó thấy kiểm tra rồi vào đó tìm
\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x}.\frac{1}{y}\)
\(=>\frac{y-x}{xy}=\frac{1}{xy}\)
\(=>xy^2-x^2y=xy\)
\(=>xy^2-x^2y-xy=0\)
\(=>x.\left(y^2-xy-y\right)=0\)
\(=>\orbr{\begin{cases}x=0\\y^2-xy-y=0\end{cases}}\)
Ta thấy \(y^2-xy-y=0\)
\(=>y.\left(y-x-y\right)=0\)
\(=>\orbr{\begin{cases}y=0\left(2\right)\\y-y=0\end{cases}}\)
Từ 1 và 2 => x = y = 0
\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x}.\frac{1}{y}\)
\(\Rightarrow\frac{y-x}{xy}=\frac{1}{xy}\)
\(\Rightarrow y-x=1\)
Vậy x,y có dạng \(\hept{\begin{cases}x=y-1\\y=x+1\end{cases}}\)với \(y\ne1;x\ne-1;x\ne0;y\ne0\)
Chia cả hai vế cho 5^x:
pt <=> (3/5)^x + (4/5)^x = 1
- Ta nhận thấy x=2 là nghiệm của phương trình
(3/5)^2 + (4/5)^2 = 1
- Ta phải chứng minh x=2 là nghiệm duy nhất của phương trình
+ với x>2: (3/5)^x < (3/5)^2 (do 3/5 <1)
(4/5)^x < (4/5)^2 (do 4/5<1)
----------------------------------------...
Cộng 2 vế: (3/5)^x + (4/5)^x < (3/5)^2 + (4/5)^2 = 1 (trái gt)
=> Phương trình không có nghiệm khi x>2.
+ Tương tự với x<2, phương trình không có nghiệm khi x<2.
- Vậy phương trình có nghiệm duy nhất x=2.
3^x+4^x=5^x vax=2
Thay x vao bieu thu ta co :
3^2+4^2=5^2
Xong roi do
giả sử căn(x) = a thì x = a2?
thì \(\sqrt{7}\) thì bằng bao nhiêu ạ?