Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( chú ý vì x/5 = y/7 = z/3 =>x;y;z cùng dấu )
x/5 = y/7 = z/3 =>(x/5)^2= (y/7)^2 = (z/3)^2 hay x^2/25 = y^2/49 =z^2 /9
x^2/25 = y^2/49 =z^2 /9 = (x^2 + y^2 - z^2) /(25+49 -9)=585/65 =9=3^2
=> (x/5)^2=3^2 =>x/5 =+-3 =>x=+-15
(y/7)^2=3^2 =>y/7 =+-3 =>y=+-21
(z/3)^2 =3^2 =>z/3 =+-3 =>z=+-9
vậy có 2 cặp (x;y;z) là: (15;21;9) và (-15;-21;-9)
Áp dụng tính chất dãy tỉ số bằng nhau do đã có \(y+z+t\ne0\), sau đó nhân dãy đã cho vs nhau. cái kia mũ 3 lên
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{t}=\left(\frac{x+y+z}{y+z+t}\right)^3=\frac{x+y+z}{y+z+t}=\frac{x-y+z}{y-z+t}=\frac{x+y-z}{y+z-t}\)
=> \(\frac{x+y+z}{y+z+t}=\frac{x}{t}\) (1)
=> \(\frac{x-y+z}{y-z+t}=\frac{x}{t}\) (2)
=> \(\frac{x+y-z}{y+z-t}=\frac{x}{t}\) (3)
Từ (1);(2) và (3) => đpcm
Bài 1:
Ta có:
\(y-x=25\Rightarrow y=25+x\)
Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)
\(7x=100+4x\)
\(\Rightarrow7x-4x=100\)
\(3x=100\)
\(x=\frac{100}{3}\)
bài 1 :
Ta có: 7x=4y ⇔ x/4=y/7
áp dụng tính chất dãy tỉ số bằng nhau ta có
x/4=y/7=(y-x)/(7-4)=100/3
⇒x= 4 x 100/3=400/3 ; y = 7 x 100/3=700/3
bài 2
ta có x/5 = y/6 ⇔ x/20=y/24
y/8 = z/7 ⇔ y/24=z/21
⇒x/20=y/24=z/21
ADTCDTSBN(bài 1 có)
x/20=y/24=z/21=(x+y)/(20+24)=69/48=23/16
⇒x= 20 x 23/16 = 115/4
y= 24x 23/16=138/2
z=21x23/16=483/16
Với \(a>0\) thì \(\left|a\right|+a=a+a=2a⋮2\)
Với \(a=0\) thì \(\left|a\right|+a=0+0=0⋮2\)
Với \(a< 0\) thì \(\left|a\right|+a=-a+a=0⋮2\)
Vậy với mọi a thì \(\left|a\right|+a⋮2\)
Ta có :\(\left|y-x\right|+\left|z-y\right|+\left|x-z\right|=2017^x+2018^x\)
\(\Rightarrow\left|y-z\right|+y-z+\left|z-y\right|+z-y+\left|x-z\right|+x-z=2017^x+2018^x\)
Vế trái chia hết cho 2 mà vế phải \(2018^x+2017^x\) không chia hết cho 2(vô lí)
Vậy không có x,y,z thỏa mãn
\(\frac{x}{7}+\frac{y}{11}+\frac{z}{13}=\frac{947}{1001}\)
\(\Leftrightarrow143x+91y+77z=947=143.3+91.4+77.2\)
Vậy x = 3 ; y = 4 và z = 2
Cm 1< M<2 thì sẽ không có giá trị là số tự nhiên..
\(\frac{x}{x+y+z+t}\)< \(\frac{x}{x+y+z}\)< \(\frac{x}{x+y}\)
Tương đương mấy cái kia cũng vậy ^_^
Sau đó cộng từng vế của BĐT ra kết quả