Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-\frac{9}{10^{2012}}+-\frac{19}{10^{2011}}=-\frac{9}{10^{2012}}+-\frac{9}{10^{2011}}+-\frac{10}{10^{2011}}\)
\(B=-\frac{9}{10^{2011}}+-\frac{19}{10^{2012}}=-\frac{9}{10^{2011}}+-\frac{9}{10^{2012}}+-\frac{10}{10^{2012}}\)
Mà \(-\frac{9}{10^{2012}}=-\frac{9}{10^{2012}};-\frac{9}{10^{2011}}=-\frac{9}{10^{2011}};-\frac{10}{10^{2012}}>-\frac{10}{10^{2011}}\)
\(\Rightarrow-\frac{9}{10^{2011}}+-\frac{9}{10^{2012}}+-\frac{10}{10^{2012}}>-\frac{9}{10^{2011}}+-\frac{9}{10^{2012}}+-\frac{10}{10^{2011}}\)
\(\Rightarrow B>A\)
Chúc bạn học tốt !!!!
+ta có 10^2010=10...0(2010 số 0)
và 10^2011=10...0(2011 số 0)
suy ra -9/10...0(2010 số 0)= -90/10...0(2011 số 0)[nhân tử,mẫu cho 10]
suy ra A=-90/10...0(2011 số 0)+-19/10...0(2011 số 0)= -109/10...0(2011 số 0) [1]
+-19/10...0(2010 số 0)= -190/10...0(2011 số 0)[nhân tử,mẫu cho 10]
và 10^2011=10...0(2011 số 0)
suy ra -9/10...0(2011 số 0)+-190/10...0(2011 số 0)= -199/10...0(2011 số 0) [2]
vì -109>-199 suy ra [1]>[2]
K CHO MIK VS BẠN ƠIIIIIIIIIIIIIIIIIII
\(-A=\frac{9}{10^{2010}}+\frac{19}{10^{2011}}\)
\(-A=\frac{9}{10^{2010}}+\frac{10}{10^{2011}}+\frac{9}{10^{2011}}\)
\(-A=\frac{9}{10^{2010}}+\frac{1}{10^{2010}}+\frac{9}{10^{2011}}\)
\(-A=\frac{10}{10^{2010}}+\frac{9}{10^{2011}}\)
\(-A=\frac{1}{10^{2009}}+\frac{9}{10^{2011}}\)
\(-B=\frac{9}{10^{2011}}+\frac{19}{10^{2010}}\)
Làm tương tự nhé
ta thấy -b > -a nên a>b
\(A-B=\frac{10}{10^{2010}}-\frac{10}{10^{2011}}=\frac{1}{10^{2009}}-\frac{1}{10^{2010}}>0\)
\(\Rightarrow A>B\)
A - B = 10 10 1 1 10 2010 - - 10 10 2009 2010 = > 0 10 2011 => A > B
\(A-B=\frac{10}{10^{2012}}-\frac{10}{10^{2011}}=\frac{1}{10^{2009}}-\frac{1}{10^{2010}}>0\)
\(\Rightarrow A>B\)
\(A=\frac{-9}{10^{2010}}+\frac{-19}{10^{2011}}=\frac{-9}{10^{2010}}+\frac{-9-10}{10^{2011}}=\frac{-9}{10^{2010}}+\frac{-9}{10^{2011}}+\frac{-10}{10^{2011}}\)
\(B=\frac{-9}{10^{2011}}+\frac{-19}{10^{2010}}=\frac{-9}{10^{2011}}+\frac{-9-10}{10^{2010}}=\frac{-9}{10^{2011}}+\frac{-9}{10^{2010}}+\frac{-10}{10^{2010}}\)
Vì \(\frac{-10}{10^{2011}}>\frac{-10}{10^{2010}}\rightarrow A>B\)
Có \(\hept{\begin{cases}A=\frac{-9}{10^{2012}}+\frac{-19}{10^{2011}}\\B=\frac{-19}{10^{2012}}+\frac{-9}{10^{2011}}\end{cases}}\)
\(\Rightarrow\)A-B=\(\frac{10}{10^{2011}}-\frac{10}{10^{2012}}=\frac{1}{10^{2010}}-\frac{1}{10^{2011}}>0\)
\(\Rightarrow A>B\)