K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2023

\(\dfrac{1}{2001}>\dfrac{1}{2002}\)

Tử số giống nhau thì so sánh số dưới mẫu, số nào lớn hơn thì nguyên phân số đó nhỏ hơn và ngược lại.

Xem lại đề bài

4 tháng 5 2016

Ta có 

B= 2000/2001+2002 + 2001/2001+2002.                                                          

Mà 2000/2001+2002 < 2000/2001 và 2001/2001+2002 < 2001/2002.              

Nên 2000/2001+2002 + 2001/ 2001+2002 < 2000/2001 + 2001/2002.      

Hay 2000+2001/ 2001+2002 < 2000/2001 + 2001/2002                            

Suy ra B < A

4 tháng 5 2016

Ta có : 2000/2001 > 2000/ 2001 + 2002 (1)

2001/2002 > 2001/2001+2002(2)

Cộng các bất đẳng thức (1) và (2)  vế với nhau:

Vậy 2000/2001 + 2001/2002> 2000/2001+2002 hay A > B

15 tháng 2 2016

(-2002)x(2001) = một số âm (theo nguyên tắc)

vậy -2002 x 2001 < 0

ủng hộ nha

15 tháng 2 2016

Tích này nhỏ hơn 0

Vì âm nhân dương sẽ ra âm mà số âm < 0

=> (-2002).2001 <0

5 tháng 3 2023

Tham khảo : 

Sứa , san hô , hải quỳ , thủy tức , sứa tu dài ,...

\(\dfrac{2001+2002}{2002+2003}< \dfrac{2001}{2002}+\dfrac{2002}{2003}\)

11 tháng 4 2016

kl của bạn sai nhưng mình vẫn tìm ra :

A>B

đề lạ zậy ko so sánh mà bảo so sánh!!!!!!! chả hỉu *_*!

765885

7 tháng 10 2020

Ta có \(\frac{2000}{2001}=1-\frac{1}{2001}\)

          \(\frac{2001}{2002}=1-\frac{1}{2002}\)

Vì \(\frac{1}{2001}>\frac{1}{2002}\)

=> \(1-\frac{1}{2001}< 1-\frac{1}{2002}\)

=> \(\frac{2000}{2001}< \frac{2001}{2002}\)

8 tháng 10 2020

ta thấy                                                                                                                                                                                      \(1=\frac{2000}{2001}+\frac{1}{2001}\)

\(1=\frac{2001}{2002}+\frac{1}{2002}\)

  mà \(\frac{1}{2001}\) \(>\frac{1}{2002}\)   ( phần bù )

   \(\frac{\Rightarrow2000}{2001}< \frac{2001}{2002}\)

  

18 tháng 5 2017

ta thấy:

\(B< 1\Rightarrow B< \frac{10^{2002}+1+9}{10^{2003}+1+9}=\frac{10^{2002}+10}{10^{2003}+10}=\frac{10\left(10^{2001}+1\right)}{10\left(10^{2002}+1\right)}=\frac{10^{2001}+1}{10^{2002}+1}=A\)

=>B<A

vậy.......

18 tháng 5 2017

Ta có:

\(A=\frac{10^{2001}+1}{10^{2002}+1}\Rightarrow10A=\frac{10\left(10^{2001}+1\right)}{10^{2002}+1}=\frac{10^{2002}+10}{10^{2002}+1}=\frac{10^{2002}+1+9}{10^{2002}+1}=1+\frac{9}{10^{2002}+1}\)

\(B=\frac{10^{2002}+1}{10^{2003}+1}\Rightarrow10B=\frac{10\left(10^{2002}+1\right)}{10^{2003}+1}=\frac{10^{2003}+10}{10^{2003}+1}=\frac{10^{2003}+1+9}{10^{2003}+1}=1+\frac{9}{10^{2003}+1}\)

Vì \(\frac{9}{10^{2002}+1}>\frac{9}{2^{2003}+1}\Rightarrow1+\frac{9}{10^{2002}+1}>1+\frac{9}{2^{2003}+1}\Rightarrow10A>10B\Rightarrow A>B\)

Vậy A > B

21 tháng 2 2016

Ta có: \(17A=17.\left(\frac{17^{2001}+1}{17^{2002}+1}\right)=\frac{17^{2002}+17}{17^{2002}+1}=\frac{17^{2002}+1+16}{17^{2002}+1}=1+\frac{16}{17^{2002}+1}\)

\(17B=17.\left(\frac{17^{2000}+1}{17^{2001}+1}\right)=\frac{17^{2001}+17}{17^{2001}+1}=\frac{17^{2001}+1+16}{17^{2001}+1}=1+\frac{16}{17^{2001}+1}\)

Vì 1 = 1 và 16 = 16 nên so sánh mẫu:

172002 + 1 > 172001 + 1

=> \(1+\frac{16}{17^{2002}+1}<1+\frac{16}{17^{2001}+1}\)

=> 17A < 17B

=> A < B.

21 tháng 2 2016

Ta có:\(17^{2001}>17^{2000},1=1\) Còn \(\frac{1}{17^{2002}},\frac{1}{17^{2001}}\) thì ko quan trọng chúng đều nhỏ hơn 1

Nên A>B

2 tháng 4 2017

Ta có:  10 *(10^2001+1)/10^2002+1 = 10^2002+10/10^2002+1 = (10^2002+1)+9/10^2002+1 = 1+9/10^2002+1

           10*(10^2002+1)/10^2003+1 = 10^2003+10/10^2003+1 = (10^2003+1)+9/10^2003+1 = 1+9/10^2003+1

 Vì 9/10^2002+1>9/10^2003+1 nên 1+9/10^2002+1>1+9/10^2003+1

    Vậy: 10^2001+1/10^2002+1>10^2002+1/10^2003+1

1 tháng 2 2017

(-2002) . (2001) = số nguyên âm < 0

Vậy (-2002) . (2001) < 0

1 tháng 2 2017

\(\left(-2002\right).\left(2001\right)< 0\)

vì một số âm nhân với một số dương hay một số dương

nhân với một số âm đều có tích là 1 số âm

Vậy \(\left(-2002\right).\left(2001\right)< 0\)