Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A=2^0+2^1+2^2+2^3+...+2^2010
=>2A=2+2^2+2^3+2^4+...+2^2011
=>2A-A=(2+2^2+2^3+...+2^2011)-( 1+2+2^2+2^3+...+2^2010)
=>A= 2^2011-1
Từ đó ta suy ra A=B (=2^2011-1)
k nha!
2A=21+22+...+22011
Suy ra: A=2A-A = (21+22+...+22011) - (20+21+...+22010)=22011-1=B
Vậy: A=B.
A= 12^2004 - 2^1000= (12^4)^501 - (2^4)^250= (...6)^501 - (...6)^250= ...6 - ...6 = ...0 chia het cho 10 (ĐPCM)
a )
2100+2100= 2100(1+1) =2100.2 = 2100+1= 2101
b)
3100+3100 = 3100(1+1) = 2.3100
3101= 3100.3
ta thấy 3. 3100 > 2.3100 Vậy 3101 > 3100+3100
c) 20177012 > 20172337.3 >>> 80002337
70122017 < 80002337
suy ra: 20177012 >>> 70122017
\(A=1+2+2^2+...+2^{2016}\)
\(2A=2+2^2+2^3+...+2^{2017}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2017}\right)-\left(1+2+2^2+...+2^{2016}\right)\)
\(A=2^{2017}-1\)
\(B=4\cdot2^{2015}\)
\(B=2^2\cdot2^{2015}\)
\(B=2^{2017}\)
=> Vì \(2^{2017}-1< 2^{2017}\)nên A < B
\(\Rightarrow2A=2^1+2^2+....+2^{2017}\)
\(\Rightarrow2A-A=2^{2017}-1\)
hay\(A=2^{2017}-1\)
mà B=2^2017
nên A<B
bạn lần sau chớ có nổ nha!
- Về phần so sánh hai lũy thừa thi bạn phải làm thế nào cho nó cùng cơ số hoặc cùng số mũ. Sau đó áp dụng quy tắc
Với \(a>b\Rightarrow a^m>b^m\) và ngược lại với a < b (đối với cùng số mũ) hoặc Với \(m>n\Rightarrow a^m>a^n\) và ngược lại với m < n (đối với cùng cơ số)
- Tiếp theo,về dạng: \(A=2+2^2+2^3+...+2^{900}\). Bạn có thấy tất cả cơ số đều là 2 đúng không? Vì chúng ta nhân tất cả cho 2. Được: \(2A=2^2+2^3+2^4+...+2^{901}\)
Sau đó lấy \(2A-A\) được: \(A=2^{901}-2\) (Do 2A - A = A)
Các dạng khác làm tương tự!