K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

Tỉ số của số thứ nhất và số thứ hai là:

28/33:7/9=12/11

Số thứ nhất là 9:1x12=108

Số thứ hai là 108-9=99

Bài 2: 

a: Để A là phân số thì x+6<>0

hay x<>-6

b: Để A là sốnguyen thì \(x+6-13⋮x+6\)

\(\Leftrightarrow x+6\in\left\{1;-1;13;-13\right\}\)

hay \(x\in\left\{-5;-7;7;-19\right\}\)

23 tháng 6 2018

a, Ta có :

\(M=\dfrac{1}{1\cdot2}+\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{1\cdot2\cdot3\cdot4}+...+\dfrac{1}{1\cdot2\cdot3\cdot...\cdot100}\\ < \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}< 1\\ \Rightarrow M< 1\\ \RightarrowĐpcm\)

1 tháng 4 2018

\(A=\dfrac{10}{a^m}+\dfrac{10}{a^n}\)

\(=\dfrac{10a^n+9a^m+a^m}{a^ma^n}\)

\(B=\dfrac{11}{a^m}+\dfrac{9}{a^n}\)

\(=\dfrac{10a^n+a^n+9a^m}{a^ma^n}\)

+ Nếu m > n thì am > an. \(\Rightarrow\) \(\dfrac{10a^n+9a^m+a^m}{a^ma^n}>\dfrac{10a^n+a^n+9a^m}{a^ma^n}\) hay A > B

+ Nếu m < n thì am < an. \(\Rightarrow\) \(\dfrac{10a^n+9a^m+a^m}{a^ma^n}< \dfrac{10a^n+a^n+9a^m}{a^ma^n}\) hay A < B

+ Nếu m = n thì am = an. \(\Rightarrow\) \(\dfrac{10a^n+9a^m+a^m}{a^ma^n}=\dfrac{10a^n+a^n+9a^m}{a^ma^n}\) hay A = B

27 tháng 1 2019

1.

ta có: 2009A= (2009^2010+ 2009)/ (2009^2010+1)= (2009^10+1+2008)/(2009^2010+1)=1+ [2008/(2009^2010+1)]

làm tương tự như trên ta được :

2009B=1-[4016/(2009^2011-2)]

lại có:

2009A= .............(nt) > 1

2009B=...........<1

=>2009A>2009B

=>A>B

27 tháng 1 2019

câu 2 và 3 thì làm sao bạn

22 tháng 2 2018

Bài 1:

Ta có: \(\dfrac{1}{3}=\dfrac{10}{30}\)\(\dfrac{1}{2}=\dfrac{15}{30}\)

=> 2 phân số lớn hơn \(\dfrac{10}{30}\) và nhỏ hơn \(\dfrac{15}{30}\)\(\dfrac{11}{30}\)\(\dfrac{12}{30}\)

hoặc \(\dfrac{13}{30}\)\(\dfrac{14}{30}\)

hehe

19 tháng 8 2017

Bài 1 :

Sửa đề :

Tìm \(n\in Z\) để những phân số sau đồng thời có giá trị nguyên

\(\dfrac{-12n}{n};\dfrac{15}{n-2};\dfrac{8}{n+1}\)

Làm

Ta có :

\(\dfrac{-12n}{n}=-12\)

\(\Leftrightarrow\) Với mọi \(n\) thì \(\dfrac{-12n}{n}\) đều có giá trị nguyên \(\left(1\right)\)

Để \(\dfrac{15}{n-2}\in Z\) \(\Leftrightarrow n-2\inƯ\left(15\right)=\left\{\pm1;\pm15;\pm3;\pm5\right\}\)

\(\Leftrightarrow n\in\left\{-13;\pm3;\pm1;5;7;17\right\}\left(1\right)\)

Để \(\dfrac{8}{n+1}\in Z\Leftrightarrow n+1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

\(\Leftrightarrow n\in\left\{-9;-5;\pm3;-2;0;1;7\right\}\left(3\right)\)

Từ \(\left(1\right)+\left(2\right)+\left(3\right)\Leftrightarrow n\in\left\{\pm3;1;7\right\}\)