Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1.1+2.1.2+3.1.2.3+4.1.2.3.4+5.1.2.3.4.5+6.1.2.3.4.5.6
=1+2.(2+3.3+4.3.4+5.3.4.5+6.3.4.5.6)
=1+2.[2+3.(3+4.4+5.4.5+6.4.5.6)]
= 1+2.{2+3.[3+4(4+5.5+6.5.6)]}
=1+2.{2+3.[3+4(4+5.(5+6.6)]}
=1+2.{2+3.[3+4(4+5.41)]}
=1+2.[2+3.(3+4.209)]
=1+2(2+3.839)
=1+2.2519
=1+ 5038
=5039
Ta có:
S = 1.1 + 2.1.2 + 3.1.2.3 + 4.1.2.3.4 + 5.1.2.3.4.5 + 6.1.2.3.4.5.6
= 1 + 2.(2 + 3.3 + 4.3.4 + 5.3.4.5 + 6.3.4.5.6)
= 1 + 2.[2 + 3.(3 + 4.4 + 5.4.5 + 6.4.5.6)]
= 1 + 2.[2 + 3.(3 + 4.(4 + 5.5 + 6.5.6))]
= 1 + 2.[2 + 3.(3 + 4.(4 + 5.(5 + 6.6)))]
= 1 + 2.[2 + 3.(3 + 4.(4 + 5.41))]
= 1 + 2.[2 + 3.(3 + 4.209)]
= 1 + 2.(2 + 3.839)
= 1 + 2.2519
= 1 + 5038
= 5039
Bạn ơi cái này bấm máy tính cx ra đấy là máy tính fx-570VN plus
Cái này có phải là vòng 15 lớp 6 ko bạn học ở đâu nhớ tk và kb với mk nhé
Kết quả là ;5039 nhé bạn
Bạn ơi cái này bấm máy tính cx ra đó máy tính fx-570VN plus đó
Vòng 15 lớp 6 đúng ko mk cx mới làm xong nè tk và kb với mk nha
Kết quả là;5039 nhé bạn
Ta có: \(n.n!=\left(n+1\right).n!-1.n!=\left(n+1\right)!-n!\)
Suy ra \(A=1+1.1!+2.2!+...+10000.10000!\)
\(=1+2!-1!+3!-2!+...+10001!-10000!\)
\(=10001!\)
A=1x2+2x3+3x4+...+49x50
3A= 3(1.2+2.3+3.4+...+49.50)
3A= 1.2.3+2.3.3+3.4.3+...+49.50.3
3A= 1.2.(3-0)+2.3(4-1)+3.4(5-2)+...+49.50.(51-48)
3A= 0.1.2-1.2.3+1.2.3-2.3.4+2.3.4-3.4.5+...+48.49.50-49.50.51
3A= 49.50.51
A= 49.50.51/3=41650
B=1x3+3x5+5x7+...+99x101
B=1/1.3 +1/3.5 +...+1/99.101
2B=2/1.3 + 2/3.5 +...+2/99.101
2B=1-1/3+1/3-1/5+...+1/99-1/101
2B=1-1/101
2B=100/101
B=100/101:2=100/202
Kí hiệu n! Là tích của các số tự nhiên từ 1 đến n : n!= 1.2.3....n.
Tính S = 1.1!+2.2!+3.3!+4.4!+5.5!
\(S=1.1!+2.2!+3.3!+4.4!+5.5!\)
\(S=1.1+2.1.2+3.1.2.3+4.1.2.3.4+5.1.2.3.4.5\)
\(S=1+4+18+96+600\)
\(S=719\)
Tổng quát khỏi cần tính trâu:
\(S=1.1!+2.2!+...+n.n!=\left(n+1\right)!-1\)
S5=5x5-(4x4-(3x3-(2x2-1x1)))
S2011=2001x2001-(2000x2000-(1999x1999-(....)))