Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{\frac{3}{125}}=\frac{\sqrt{3.125}}{125}=\frac{\sqrt{375}}{125}=\frac{5\sqrt{15}}{125}=\frac{\sqrt{15}}{25}\)
b) \(\sqrt{\frac{3}{2a^3}}=\frac{\sqrt{3.2a^3}}{2a^3}=\frac{\sqrt{6a^3}}{2a^3}\)
c) \(\sqrt{\frac{\left(1-\sqrt{3}\right)^2}{27}}=\frac{\sqrt{27\left(1-\sqrt{3}\right)^2}}{27}=\frac{3.\left(\sqrt{3}-1\right)\sqrt{3}}{27}=\frac{\left(\sqrt{3}-1\right)\sqrt{3}}{9}\)
d) \(\sqrt{\frac{11}{540}}=\frac{\sqrt{11.540}}{540}=\frac{\sqrt{5940}}{50}=\frac{6\sqrt{165}}{50}=\frac{3\sqrt{165}}{25}\)
Lời giải:
\(\sqrt{\frac{(1+\sqrt{2})^3}{27}}=\sqrt{\frac{(1+\sqrt{2})^3}{3^3}}=\sqrt{\frac{3(1+\sqrt{2})^3}{3^4}}\)
\(=\frac{(1+\sqrt{2})\sqrt{3+3\sqrt{2}}}{9}\)
\(ab\sqrt{\frac{1}{a}+\frac{1}{b}}=\sqrt{(ab)^2(\frac{1}{a}+\frac{1}{b})}=\sqrt{ab^2+a^2b}\)
Khử mẫu biểu thức chứa căn ms đúng
\(\sqrt{\frac{\left(1+\sqrt{2}\right)^3}{27}}=\sqrt{\frac{\left(1+\sqrt{2}\right)^2\cdot\left(1+\sqrt{2}\right)}{3^2\cdot3}}=\frac{1+\sqrt{2}}{3}\cdot\sqrt{\frac{1+\sqrt{2}}{3}}\)
\(=\frac{1+\sqrt{2}}{3}\cdot\frac{\sqrt{3\cdot\left(1+\sqrt{2}\right)}}{3}=\frac{1+\sqrt{2}}{9}\cdot\sqrt{3+3\sqrt{2}}\)
\(\sqrt{\frac{3}{2a^3}}=\frac{\sqrt{3.2a^3}}{2a^3}=\frac{\sqrt{6a^3}}{2a^3}\)