Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 3 số tự nhiên liên tiếp \(2020^{2021}-1;2020^{2021};2020^{2022}\) luôn có 1 số chia hết cho 3
Mà \(2020\equiv1\left(mod3\right)\Rightarrow2020^{2021}\equiv1\left(mod3\right)\)
Khi đó một trong 2 số \(2020^{2021}-1;2020^{2021}+1\) chia hết cho 3
=> đpcm
Ta cần chứng minh tồn tài hai số nguyên tố liên tiếp mà khoảng cách giữa chúng lớn hơn \(10^{2021}\).
Tổng quát, ta sẽ chứng minh với mọi \(n\)nguyên, luôn có hai số nguyên tố liên tiếp có khoảng cách lớn hơn \(n\).
Xét dãy \(n\)số liên tiếp: \(\left(n+1\right)!+2,\left(n+1\right)!+3,...,\left(n+1\right)!+n+1\).
Với \(2\le k\le n+1\):
\(\left(n+1\right)!+k⋮k\)mà \(\left(n+1\right)!+k>k\)nên \(\left(n+1\right)!+k\)là hợp số.
Do đó dãy đã cho gồm toàn hợp số.
Vậy ta có đpcm.
475 = ...1 . 7 = ...7
475 + 20216 = ....7 + ...1 = ...8
Vì số chính phương không có chữ số tận cùng bằng 8
\(\Rightarrow\)475 + 20216 không phải là SCP
Ta có: \(47^5=47^4.47=\left(\overline{...1}\right)^4.47=\overline{...1}.47=\overline{...7}\)
Vậy chữ số tận cùng của 475 là 7.
Ta có: \(2021^6=\left(\overline{...1}\right)^6=\overline{...1}\)
\(\Rightarrow47^5+2021^6=\overline{...7}+\overline{...1}=\overline{...8}\)
Mà số chính phương không bao giờ có chữ số tận cũng bằng 8
\(\Rightarrow47^5+2021^6\) không là số chính phương
Giải :
475 = 474 . 47 = .............1 . 47 = ...........7 => Có chữ số tận cùng là 7
Ta có :
20216 = .........1 => Có chữ số tận cùng là 1
=> 475 + 21216 = ........7 + .......1 = .....8 => Có chữ số tận cùng là 8 => Không phải số chính phương ( do số chính phương không bao giờ tận cùng là 2, 3, 7, 8, chỉ có chữ số tận cùng là 1, 4, 5, 6, 9 )
Vậy ................
a) \(M=2020+2020^2+...+2020^{10}\)
\(M=\left(2020+2020^2\right)+\left(2020^3+2020^4\right)+...+\left(2020^9+2020^{10}\right)\)
\(M=2020\left(1+2020\right)+2020^3\left(1+2020\right)+...+2020^9\left(1+2020\right)\)
\(M=2021\left(2020+2020^3+...+2020^9\right)⋮2021\).
b) Bạn làm tương tự câu a).
b, \(A=2021+2021^2+...+2021^{2020}\)
\(=2021\left(1+2021\right)+...+2021^{2019}\left(1+2021\right)\)
\(=2022\left(2021+...+2021^{2019}\right)⋮2022\)
Vậy ta có đpcm
\(A=4+2^2+2^3+...+2^{2005}\)
\(2A=4+2^2+2^3+...+2^{2006}\)
\(2A-A=\left(4+2^2+2^3+...+2^{2006}\right)-\left(4+2^2+2^3+...+2^{2005}\right)\)
\(A=4+2^2+2^3+...+2^{2006}-4-2^2-2^3-...-2^{2005}\)
\(A=2^{2006}\)
Vậy A là 1 luỹ thừa của cơ số 2
\(B=5+5^2+...+5^{2021}\)
\(5B=5^2+5^3+...+5^{2022}\)
\(5B-B=\left(5^2+5^3+...+5^{2022}\right)-\left(5+5^2+...+5^{2021}\right)\)
\(4B=5^{2022}-5\)
\(B=\frac{5^{2022}-5}{4}\)
\(B+8=\frac{5^{2022}-5}{4}+8\)
\(B+8=\frac{5^{2022}-5}{4}+\frac{32}{4}\)
\(B+8=\frac{5^{2022}-5+32}{4}\)
\(B+8=\frac{5^{2022}+27}{4}\)
=> B + 8 k thể là số b/ph của 1 số tn