Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2015}{2016}< \frac{2016}{2017}\)
\(\frac{2018}{2018}< \frac{2018}{2019}\)
Ta có:
1-2015/2016=1/2016
1-2016/2017=1/2017
Vì 1/2016>1/2017=>2015/2016<2016/2017
Ta có:
2018/2018=1
2019/2018>1
=>2018/2018<2019/2018
A > B mình chả bít có đúng hay ko
mong các bn nhận xét
vÌ 2017/2019 có tử bé hơn mẫu nên phân số này bé hơn 1
Còn 1975/1971 có tử lớn hơn mẫu nên phân số này lớn hơn 1
Suy ra 2017/2019<1975/1971
Câu trước mình giải chi tiết rồi mà
\(\frac{2010}{2011}\)+\(\frac{2011}{2012}\)+\(\frac{2012}{2013}\)+\(\frac{2013}{2011}\)
= 1 -\(\frac{1}{2011}\)+ 1 -\(\frac{1}{2012}\)+ 1 -\(\frac{1}{2013}\)+ 1 + \(\frac{2}{2011}\)
= 4 + \(\frac{1}{2011}\)-\(\frac{1}{2012}\)-\(\frac{1}{2013}\)< 4
2010201120102011+2011201220112012+2012201320122013+2013201120132011
= 1 -1201112011+ 1 -1201212012+ 1 -1201312013+ 1 + 2201122011
= 4 + 1201112011-1201212012-1201312013< 4
\(\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2013}+\dfrac{2013}{2011}\)
=1-\(\dfrac{1}{2011}\)+1\(-\dfrac{1}{2012}\)+1-\(\dfrac{1}{2013}\)+1-\(\dfrac{1}{2011}\)
=4-(\(\dfrac{2}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\)) < 4
m=\(\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2013}+\dfrac{2013}{2011}\)
=\(1-\dfrac{1}{2011}+1-\dfrac{1}{2012}+1-\dfrac{1}{2013}+1+\dfrac{2}{2011}\)
=4+\(\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\)
vì:
do \(\dfrac{1}{2011}< 1\)
\(\dfrac{1}{2012}< 1\)
\(\dfrac{1}{2013}< 1\)
nên \(\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}< 1-1-1=-1\)
hay \(\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}< 0\)
nên 4+\(\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}< 4\)
vậy tổng m <4
bài này mình tưởng phải lên cấp 2 mới có thế mà mấy em lớp 4 đã phải làm á
Ta thấy
\(\dfrac{2010}{2011}< 1\)
\(\dfrac{2011}{2012}< 1\)
\(\dfrac{2012}{2013}< 1\)
\(\dfrac{2013}{2014}< 1\)
=> Tổng M của những phân số trên sẽ nhỏ hơn 1
=> M < 1
nhận xét
\(\dfrac{2010}{2011}\)<1
...
\(\dfrac{2013}{2014}< 1\)
vì 1<4⇒M<4
#)Giải :
Ta có : \(1-\frac{2010}{2011}=\frac{1}{2011}\)
\(1-\frac{2011}{2012}=\frac{1}{2012}\)
Vì \(\frac{1}{2011}>\frac{1}{2012}\Rightarrow\frac{2010}{2011}>\frac{2011}{2012}\)
\(\frac{2010}{2011}=1-\frac{1}{2011}\)
\(\frac{2011}{2012}=1-\frac{1}{2012}\)
\(2011\)<\(2012\)\(\Rightarrow\frac{1}{2011}\)>\(\frac{1}{2012}\)
\(\Rightarrow\frac{2010}{2011}\)<\(\frac{2011}{2012}\)
Lời giải:
$\frac{2013}{2011}=1+\frac{2}{2011}> 1+\frac{2}{2017}=\frac{2019}{2017}$
Vậy $\frac{2013}{2011}> \frac{2019}{2017}$