Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{1}{1.2}+\frac{2}{1.2.3}+.....+\frac{9}{1.2.3.....10}\)
\(M=\frac{2-1}{1.2}+\frac{3-1}{1.2.3}+....+\frac{10-1}{1.2......10}\)
\(M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{6}+....+\frac{10}{1.2.....10}-\frac{1}{1.2.....10}\)
\(M=1-\frac{1}{1.2.3......10}\)
\(M=1-\frac{1}{3628800}\)
Vì \(1=1\)mà \(\frac{1}{3628800}< 1\)nên \(1-\frac{1}{3628800}< 1\)
Vậy \(M< 1\)
Lời giải:
Ta sẽ cm $A_n=\frac{1}{2!}+\frac{2}{3!}+....+\frac{n-1}{n!}=\frac{n!-1}{n!}$ với mọi $n\geq 2$ bằng quy nạp.
Thật vậy:
Với $n=2$ thì: $A_2=\frac{1}{2!}=\frac{2!-1}{2!}$
Với $n=3$ thì $A_3=\frac{1}{2!}+\frac{2}{3!}=\frac{3}{3!}+\frac{2}{3!}=\frac{5}{3!}=\frac{3!-1}{3!}$
.......
Giả sử khẳng định trên đúng đến $n=k$. Tức là
$A_k=\frac{1}{2!}+\frac{2}{3!}+...+\frac{k-1}{k!}=\frac{k!-1}{k!}$
Ta cần chỉ ra $A_{k+1}=\frac{1}{2!}+\frac{2}{3!}+...+\frac{k-1}{k!}+\frac{k}{(k+1)!}=\frac{(k+1)!-1}{(k+1)!}$
Ta có:
$A_{k+1}=A_{k}+\frac{k}{(k+1)!}=\frac{k!-1}{k!}+\frac{k}{(k+1)!}$
$=\frac{(k+1)(k!-1)}{(k+1)!}+\frac{k}{(k+1)!}=\frac{(k+1)!-(k+1)+k}{(k+1)!}$
$=\frac{(k+1)!-1}{(k+1)!}$
Phép quy nạp hoàn thành.
Áp dụng vào bài toán:
$\frac{1}{2!}+\frac{2}{3!}+...+\frac{9}{10!}=\frac{10!-1}{10!}<1$
Vì 200920092009 < 201020102010
2010 < 20092009
=> 200920092009 x 2010 < 201020102010 x 20092009
=> A < B
Ta có : A = 200920092009 * 2010
A = 2009 * 100010001 * 2010
Lại có : B = 201020102010 * 20092009
B = 2010 * 100010001 * 20092009
Vì 20092009 > 2009 nên 2010 * 100010001 * 20092009 > 2010 * 100010001 * 2009 nên B > A
Vậy B > A
1/2x + x = 3/2x và SCmới = 1/2y
( 3/2x : 1/2y ) : ( x : y ) = ( 3/2x : x ) : ( 1/2y : y )
= 3/2 : 1/2 = 3
Vậy thương mới gấp 3 lần thương cũ .
\(M=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}\)
\(>1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\)
\(=1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(=1+\frac{1}{2}-\frac{1}{11}\)
\(>1+\frac{1}{2}-\frac{1}{6}=\frac{4}{3}\)