K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2018

\(M=\frac{1}{1.2}+\frac{2}{1.2.3}+.....+\frac{9}{1.2.3.....10}\)

\(M=\frac{2-1}{1.2}+\frac{3-1}{1.2.3}+....+\frac{10-1}{1.2......10}\)

\(M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{6}+....+\frac{10}{1.2.....10}-\frac{1}{1.2.....10}\)

\(M=1-\frac{1}{1.2.3......10}\)

\(M=1-\frac{1}{3628800}\)

Vì \(1=1\)mà \(\frac{1}{3628800}< 1\)nên \(1-\frac{1}{3628800}< 1\)

Vậy \(M< 1\)

AH
Akai Haruma
Giáo viên
26 tháng 10 2024

Lời giải:
Ta sẽ cm $A_n=\frac{1}{2!}+\frac{2}{3!}+....+\frac{n-1}{n!}=\frac{n!-1}{n!}$ với mọi $n\geq 2$ bằng quy nạp.

Thật vậy:

Với $n=2$ thì: $A_2=\frac{1}{2!}=\frac{2!-1}{2!}$

Với $n=3$ thì $A_3=\frac{1}{2!}+\frac{2}{3!}=\frac{3}{3!}+\frac{2}{3!}=\frac{5}{3!}=\frac{3!-1}{3!}$

.......

Giả sử khẳng định trên đúng đến $n=k$. Tức là 

$A_k=\frac{1}{2!}+\frac{2}{3!}+...+\frac{k-1}{k!}=\frac{k!-1}{k!}$

Ta cần chỉ ra $A_{k+1}=\frac{1}{2!}+\frac{2}{3!}+...+\frac{k-1}{k!}+\frac{k}{(k+1)!}=\frac{(k+1)!-1}{(k+1)!}$

Ta có:

$A_{k+1}=A_{k}+\frac{k}{(k+1)!}=\frac{k!-1}{k!}+\frac{k}{(k+1)!}$

$=\frac{(k+1)(k!-1)}{(k+1)!}+\frac{k}{(k+1)!}=\frac{(k+1)!-(k+1)+k}{(k+1)!}$

$=\frac{(k+1)!-1}{(k+1)!}$

Phép quy nạp hoàn thành.

Áp dụng vào bài toán:

 $\frac{1}{2!}+\frac{2}{3!}+...+\frac{9}{10!}=\frac{10!-1}{10!}<1$

1 tháng 7 2017

Vì 200920092009 < 201020102010

     2010 < 20092009

=> 200920092009 x 2010 < 201020102010 x 20092009

=> A < B

1 tháng 7 2017

b lớn hơn

Ta có : A = 200920092009 * 2010

           A = 2009 * 100010001 * 2010

Lại có : B = 201020102010 * 20092009      

            B = 2010 * 100010001 * 20092009

Vì 20092009 > 2009 nên 2010 * 100010001 * 20092009 > 2010 * 100010001 * 2009 nên B > A

Vậy B > A   

3 tháng 11 2015

1/2x + x = 3/2x và SCmới = 1/2y

( 3/2x : 1/2y ) : ( x : y ) = ( 3/2x : x ) : ( 1/2y : y ) 

= 3/2 : 1/2 = 3

Vậy thương mới gấp 3 lần thương cũ .

DD
16 tháng 5 2021

\(M=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}\)

\(>1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\)

\(=1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)

\(=1+\frac{1}{2}-\frac{1}{11}\)

\(>1+\frac{1}{2}-\frac{1}{6}=\frac{4}{3}\)