Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{P\left(x\right)}{Q\left(x\right)}=\frac{x^4+x^3-2x^2+ax+b+x^2}{x^2+x-2}=x^2+\frac{x^2+ax+b}{x^2+x-2}\)
Để P(x)\(⋮\) Q(x)
\(\Rightarrow x^2+ax+b⋮x^2+x-2\)
\(\Rightarrow a=1;b=-2\)
Vậy.......
Cách 1 : Chia \(f(x)\)cho x2 + x + 1
Ta được dư là : \((2-a)x+(b+1-a)=r(x)\)
Ta có phép chia hết khi và chỉ khi \(r(x)=0\), tức là : \(\hept{\begin{cases}2-a=0\\b+1-a=0\end{cases}\Rightarrow}a=2,b=1\)
Cách 2 : Chú ý rằng \(f(x)\)bậc 3 , còn đa thức chia là bậc 2, nên thương phải là một nhị thức bậc nhất, có dạng x + k . Từ đó :
\((x+k)(x^2+x+1)=x^3+ax^2+2x+b\)
\(\Leftrightarrow x^3+ax^2+2x+b=x^3+(k+1)x^2+(k+1)x+k\)
Hệ số của các hạng tử cùng bậc phải bằng nhau , suy ra a = k + 1 ; 2 = k + 1 ; b = k. Từ đây ta có : k = 1 , a = 2 , b = 1
a)\(x^4-6x^2+2x+28\)
\(=\left(x^4-x^3\right)+\left(x^3-x^2\right)-\left(5x^2-5x\right)-\left(3x-3\right)+25\)
\(=\left(x-1\right)\left(x^3+x^2-5x-3\right)+25\)
=> số dư là 25
b) Cách làm tương tự câu a nhé
Phân tích đa thức thành nhân tử:
a) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)
b) \(25-x^2+4xy-4y^2=25-\left(x^2-4xy+4y^2\right)=25-\left(x-2y\right)^2\)
\(=\left(5-x+2y\right)\left(5+x-2y\right)\)
Rút gọn biểu thức;
\(A=\left(6x+1\right)^2+\left(3x-1\right)^2-2\left(3x-1\right)\left(6x+1\right)\)
\(=\left[\left(6x+1\right)-\left(3x-1\right)\right]^2=\left(6x+1-3x+1\right)=\left(3x+2\right)^2\)
Tìm a để đa thức.. Bạn chia cột dọ thì da
\(xy+y^2-x-y=\left(xy+y^2\right)-\left(x+y\right)=y\left(x+y\right)-\left(x+y\right)=\left(y-1\right)\left(x+y\right)\)b)\(25-\left(x^2-4xy+4y^2\right)=5^2-\left(x-2y\right)^2=\left(x-2y+5\right)\left(5-x+2y\right)\)
Câu hỏi của Hồ Thu Giang - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
/ (4x−2)(10x+4)(5x+7)(2x+1)+17=0(4x−2)(10x+4)(5x+7)(2x+1)+17=0
⇔(4x−2)(5x+7)(10x+4)(2x+1)+17=0⇔(4x−2)(5x+7)(10x+4)(2x+1)+17=0
⇔(20x2+18x−14)(20x2+18x+4)+17=0⇔(20x2+18x−14)(20x2+18x+4)+17=0
Đặt t= 20x2+18x+4(t≥0)20x2+18x+4(t≥0) ta có:
(t-18).t +17=0
⇔t2−18t+17=0⇔t2−18t+17=0
⇔(t−17)(t−1)=0⇔(t−17)(t−1)=0
⇔[t=17(tm)t=1(tm)⇔[t=17(tm)t=1(tm) ⇔[20x2+18x+4=1720x2+18x+4=1⇔[20x2+18x−13=020x2+18+3=0⇔[20x2+18x+4=1720x2+18x+4=1⇔[20x2+18x−13=020x2+18+3=0
⇔[(20x+9−341−−−√)(20x+9+341−−−√)=0(20x+9−21−−√)(20x+9+21−−√)=0⇔[(20x+9−341)(20x+9+341)=0(20x+9−21)(20x+9+21)=0
⇔⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢x=−9+341−−−√20x=−9−341−−−√20x=−9+21−−√20x=−9−21−−√20
\(a,\)\(\left(4x-2\right)\left(10x+4\right)\left(5x+7\right)\left(2x+1\right)+17\)
\(=\left(4x-2\right)\left(5x+7\right)\left(10x+4\right)\left(2x+1\right)+17\)
\(=\left(20x^2+18x-5\right)\left(20x^2+18x+4\right)+17\)
Đặt ....
\(f\left(x\right)=x^3-9x^2+6x+16\)
\(\Leftrightarrow f\left(x\right)=\left(x^3-10x^2+16x\right)+\left(x^2-10x+16\right)\)
\(\Leftrightarrow f\left(x\right)=x\left(x^2-10x+16\right)+\left(x^2-10x+16\right)\)
\(\Leftrightarrow f\left(x\right)=\left(x+1\right)\left(x^2-10x+16\right)\)
\(\Leftrightarrow f\left(x\right)=\left(x+1\right)\left(x^2-8x-2x+16\right)\)
\(\Leftrightarrow f\left(x\right)=\left(x+1\right)\left[x\left(x-8\right)-2\left(x-8\right)\right]\)
\(\Leftrightarrow f\left(x\right)=\left(x+1\right)\left(x-2\right)\left(x-8\right)\)
Vậy f(x) chia hết cho x + 1 nhưng không chia hết cho x - 3
Bạn có thể dùng sơ đồ Hoóc-ne
a
a=-1 1 -9 6 16 1 -10 16 0
Vậy \(f\left(x\right)⋮x+1\)
b
1 -9 6 16 a=3 1 -6 -12 -20
Vậy \(f\left(x\right)\) không chia hết cho \(x-3\)