K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2021

a) Ta có: sin30=cos60, sin50=cos40

    Mà cos30 < cos38 < cos40 < cos60 < cos80

    Nên cos30 < cos38 < sin50 < sin30 < cos80

b) Ta có: tan75=cot15, tan63=cot27 => cot11 < tan75 < cot20 < tan63 (1)

         và: sin49=cos41 => cos30 < sin49 (2)

    Lại có: cot11=tan69 > tan49= sin49:cos49 > sin49 (do cos49<1) (3)

    Từ (1), (2) và (3) suy ra: cos30 < sin49 < cot11 < tan75 < cot20 < tan63

   

    

25 tháng 8 2021

TA CÓ   \(\sin30\)\(\cos60\)

             \(\sin50=\cos40\)

---->>  \(\cos30< \cos38< \cos40< \cos60< \cos80\)

------>> \(\cos30< \cos38< \sin50< \sin60< \cos80\)

Cái kia làm tương tự nhoa

Bạn xin 1 cái k

3 tháng 11 2017

cos50 , sin49 , cot41 , tan65 , cot15

29 tháng 6 2019

cos50 , sin 49 , tan 65, cotg15, cotg45

c: \(\cot50^0>\cos50^0>\cos70^0\)

a: \(\tan40^0>\cos40^0>\cos60^0\)

b: \(\cot70^0=\tan20^0>\sin20^0>\sin10^0\)

a: \(sin17^040'< sin45^030'< sin47^013'< sin55^025'\)

nên \(cos72^020'< cos44^030'< sin47^013'< sin55^025'\)

b: \(=2017\left(sin^223^0+sin^267^0\right)+\left(sin^237^0+sin^253^0\right)\)

=2017+1

=2018

12 tháng 9 2015

Bài 1 :

\(C=cos^2a\left(cos^2a+sin^2a\right)+sin^2a=cos^2a+sin^2a=1\)