Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: sin30=cos60, sin50=cos40
Mà cos30 < cos38 < cos40 < cos60 < cos80
Nên cos30 < cos38 < sin50 < sin30 < cos80
b) Ta có: tan75=cot15, tan63=cot27 => cot11 < tan75 < cot20 < tan63 (1)
và: sin49=cos41 => cos30 < sin49 (2)
Lại có: cot11=tan69 > tan49= sin49:cos49 > sin49 (do cos49<1) (3)
Từ (1), (2) và (3) suy ra: cos30 < sin49 < cot11 < tan75 < cot20 < tan63
TA CÓ \(\sin30\)= \(\cos60\)
\(\sin50=\cos40\)
---->> \(\cos30< \cos38< \cos40< \cos60< \cos80\)
------>> \(\cos30< \cos38< \sin50< \sin60< \cos80\)
Cái kia làm tương tự nhoa
Bạn xin 1 cái k
c: \(\cot50^0>\cos50^0>\cos70^0\)
a: \(\tan40^0>\cos40^0>\cos60^0\)
b: \(\cot70^0=\tan20^0>\sin20^0>\sin10^0\)
a: \(sin17^040'< sin45^030'< sin47^013'< sin55^025'\)
nên \(cos72^020'< cos44^030'< sin47^013'< sin55^025'\)
b: \(=2017\left(sin^223^0+sin^267^0\right)+\left(sin^237^0+sin^253^0\right)\)
=2017+1
=2018
Bài 1 :
\(C=cos^2a\left(cos^2a+sin^2a\right)+sin^2a=cos^2a+sin^2a=1\)