K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2018

Phương trình hoành độ giao điểm của ∆  và (P) là

x 2 - x + 3 = x + 2 m ⇔ x 2 - 2 x + 3 = 0                         (*)

Giả sử A ( x A ; y A )  thì B x B ; y B  là các nghiệm của phương trình (*).

Theo định lí Vi-ét ta có x A + x B = 2 .

Ta có y A = x A + 2 m ,   y B = x B + 2 m  nên y A + y B = x A + x B + 4 m = 2 + 4 m .

Tọa độ trung điểm I của đoạn thẳng AB là I x A + x B 2 ; y A + y B 2 = I 1 ; 2 m + 1 .

Chọn A.

14 tháng 8 2018

24 tháng 11 2019

Đáp án A

Ta có 

A thuộc ∆1 nên A( a; a+ 1).

P( 2;1) là trung điểm của đoạn AB nên B( 4-a; 1-a).

Mặt khác:

Đường thẳng AP có VTPT ( 4;-1) và qua P(2;1) nên có phương trình:

4x – y- 7 = 0

b: Tọa độ điểm A là nghiệm của hệ phương trình:

\(\left\{{}\begin{matrix}-x+1=x+1\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)

Tọa độ điểm B là nghiệm của hệ phương trình:

\(\left\{{}\begin{matrix}y=-1\\-x+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=2\end{matrix}\right.\)

Tọa độ điểm C là nghiệm của hệ phương trình:

\(\left\{{}\begin{matrix}y=-1\\x+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)

Sửa đề: AD=AC

a: Xét ΔACE và ΔADE có 

AC=AD

\(\widehat{CAE}=\widehat{DAE}\)

AE chung

DO đó: ΔACE=ΔADE

Suy ra: \(\widehat{CAE}=\widehat{DAE}\)

hay AE là phân giác của góc CAB

b: Ta có: AC=AD

EC=ED

DO đó: AE là đường trung trực của CD

c: ta có: AE là đường trung trực của CD

nên AE\(\perp\)CD tại I

=>ΔAID vuông tại I

=>\(\widehat{ADI}< 90^0\)

=>\(\widehat{CDB}>90^0\)(Do góc ADI và góc CDB là hai góc kề bù)

Xét ΔCDB có \(\widehat{CDB}>90^0\)

nên BC là cạnh lớn nhất

=>BC>CD

NV
4 tháng 3 2021

\(\overrightarrow{AM}.\overrightarrow{AB}=AM^2=\overrightarrow{AM}^2\)

\(\Leftrightarrow\overrightarrow{AM}\left(\overrightarrow{AB}-\overrightarrow{AM}\right)=0\)

\(\Rightarrow\overrightarrow{AM}.\overrightarrow{MB}=0\)

\(\Rightarrow AM\perp BM\)

\(\Rightarrow\) Quỹ tích là đường tròn đường kính AB