Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
- a,(2+xy)^2=4+4xy+x^2y^2
- b,(5-3x)^2=25-30x+9x^2
- d,(5x-1)^3=125x^3 - 75x^2 + 15x^2 - 1
a) \(-x-y^2+x^2-y\)
\(=\left(x^2-y^2\right)-\left(x+y\right)\)
\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right).1\)
\(=\left(x+y\right)\left(x-y-1\right)\)
b) \(x\left(x+y\right)-5x-5y\)
\(=x\left(x+y\right)-5\left(x+y\right)\)
\(=\left(x+y\right)\left(x-5\right)\)
c) \(x^2-5x+5y-y^2\)
\(=\left(x^2-y^2\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-5\right)\)
d) \(5x^3-5x^2y-10x^2+10xy\)
\(=5x\left(x^2-xy-2x+2y\right)\)
\(=5x\left[x\left(x-y\right)-2\left(x-y\right)\right]\)
\(=5x\left(x-y\right)\left(x-2\right)\)
e) \(27x^3-8y^3\)
\(=\left(3x\right)^3-\left(2y\right)^3\)
\(=\left(3x-2y\right)\left[\left(3x\right)^2+3x2y+\left(2y\right)^2\right]\)
\(=\left(3x-2y\right)\left(9x^2+6xy+4y^2\right)\)
f) \(x^2-y^2-x-y\)
\(=\left(x^2-y^2\right)-\left(x+y\right)\)
\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
g) \(x^2-y^2-2xy+y^2\)
\(=\left(x^2-2xy+y^2\right)-y^2\)
\(=\left(x-y\right)^2-y^2\)
\(=\left(x-y-y\right)\left(x-y+y\right)\)
\(=\left(x-y^2\right)x\)
h) \(x^2-y^2+4-4x\)
\(=\left(x^2-4x+4\right)-y^2\)
\(=\left(x^2-2.2x+2^2\right)-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-2-y\right)\left(x-2+y\right)\)
i) \(x^6-y^6\)
\(=\left(x^3\right)^2-\left(y^3\right)^2\)
\(=\left(x^3-y^3\right)\left(x^3+y^3\right)\)
\(=\left[\left(x-y\right)\left(x^2+xy+y^2\right)\right]\left[\left(x+y\right)\left(x^2-xy+y^2\right)\right]\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)
Bài 2:
a: =(x-1)(x^2+x+1)-4x(x-1)
=(x-1)(x^2-3x+1)
b: =x^3-x^2-2x^2+2x+2x-2
=(x-1)(x^2-2x+2)
c: \(=x^3-2x^2-2x^2+4x+x-2=\left(x-2\right)\left(x^2-2x+1\right)\)
=(x-2)(x-1)^2
a, -x - y2 + x2 - y = (x2 - y2) - (x + y)
= (x - y)(x + y) - (x + y)
= (x + y)(x - y - 1)
b, x( x + y ) - 5x - 5y = x(x + y) - 5(x + y)
= (x - 5)(x + y)
c, x2 - 5x + 5y - y2 = (x - y)(x + y) - 5(x - y)
= (x - y)(x + y - 5)
d, 5x3 - 5x2y - 10x2 + 10xy = 5x2(x - y) - 10x(x - y)
= 5x(x - y)(x - 2)
e, 27x3 - 8y3 = (3x - 2y)(9x2 + 6xy + 4y2)
f, x2 - y2 - x - y = (x - y)(x + y) - (x + y)
= (x + y)(x - y - 1)
g, x2 - y2 - 2xy + y2 = (x2 - 2xy + y2) - y2
= (x - y)2 - y2
= (x - y - y)(x - y + y) = x(x - 2y)
h, x2 - y2 + 4 - 4x = (x2 - 4x + 4) - y2
= (x - 2)2 - y2
= (x - y - 2)(x + y - 2)
i, x3 + 3x2 + 3x + 1 - 27z3 = (x + 1)3 - 27z3
= (x+1-3z)(x2+2x+1+3xz+3z+9z2)
k, 4x2 + 4x - 9y2 + 1 = (2x + 1)2 - 9y2
= (2x - 3y + 1)(2x + 3y + 1)
m, x2 - 3x + xy - 3y = x(x - 3) + y(x - 3)
= (x - 3)(x + y)
Ta có : x3 - 7x + 6
= x3 - x - 6x + 6
= x(x2 - 1) - 6(x - 1)
= x(x + 1)(x - 1) - 6(x - 1)
= (x - 1) [x(x + 1) - 6]
= (x - 1) (x2 + x - 6) .
CÁC Ý SAU TƯƠNG TỰ
1
x3-7x+6
=x3+0x2-7x +6
= x3-x2+x2-x-6x+6
=(x3-x2)+(x2-x)-(6x-6)
=x2(x-1)+x(x-1)-6(x-1)
=(x-1)(x2+x-6)
=(x-1)(x2+3x-2x-6)
=(x-1)[x(x+3)-2(x+3)]
=(x-1)(x-2)(x+3)
7) (x+2)(x+3)(x+4)(x+5)-24
=(x+2)(x+5) (x+3)(x+4)-24
=[x(x+5)+2(x+5)][x(x+4)+3(x+4)]-24
=[x2+5x+2x+10][x2+4x+3x+12]-24
=[x2+7x+10][x2+7x+12]-24
đặt a=x2+7x+10
=>x2+7x+12=a+2
=a(a+2)-24
=a2+2a-24
=a2+6a-4a-24
=(a2+6a)-(4a+24)
=a(a+6)-4(a+6)
=(a+6)(a-4)
thay a= x2+7x+10 vào ta được
(x2+7x+10+6)(x2+7x+10-4)
=(x2+7x+16)(x2+7x+6)
Bài 1:
a) x^3 + 2x^2 + x = x.(x^2+2x+1) = x.(x+1)^2
b) xy + y^2 - x - y
= y.(x+y) - (x+y)
= (x+y).(y-1)
a) = (x + 3)2 - y2 = (x + 3 - y)(x + 3 + y)
b) = x2(x - 3) -4(x - 3) = (x - 3)(x2 - 4) = (x - 3)(x - 2)(x + 2)
c) = 3x(x - y) - 5(x - y) = (x - y)(3x - y)
d) Nhầm đề. tui sửa lại x3 + y3 + 2x2 - 2xy + 2y2
= x3 + y3 + 2(x2 - xy + y2) = (x + y)(x2 - xy + y2) + 2(x2 - xy + y2) = (x2 - xy + y2)(x + y + 2)
e) = x4 - x3 - x3 + x2 - x2 + x + x - 1 = x3(x - 1) - x2(x - 1) - x(x - 1) + x - 1 = (x - 1)(x3 - x2 - x + 1) = (x - 1)(x - 1)(x2 - 1) = (x - 1)3(x + 1)
f) = x3 - 3x2 - x2 + 3x + 9x - 27 = x2(x - 3) - x(x - 3) + 9(x - 3) = (x-3)(x2 - x + 9)
g) chắc là 3xyz
= x2y + xy2 + y2z + yz2 + x2z + xz2 + 3xyz = x2y + xy2 + xyz + y2z + yz2 + xyz + x2z + xz2 + xyz = (x + y + z)(xy + yz + xz)
h) = 23 -(3x)3 = (2 - 3x)(4 + 6x + 9x2)
i) = (x + y - x + y)(x + y + x - y) = 2y*2x = 4xy
k) = (x3 - y3)(x3 + y3) = (x - y)(x2 + xy +y2)(x + y)(x2 - xy +y2).
a) x2y3 - 1/2x4y8 = x2y3( 1 - 1/2x2y5 )
b) a2b4 + a3b - abc = ab( ab3 + a2 - c )
c) 7x( y - 4 )2 - ( y - 4 )3 = ( y - 4 )2( 7x - y + 4 )
d) -x2y2z - 6x3y - 8x4z2 - x2y2z2 = -x2( y2z + 6xy + 8x2z2 + y2z2 )
e) x3 - 4x2 + x = x( x2 - 4x + 1 )
\(\dfrac{8x^3y^2-6x^2y^3}{-2xy}=\dfrac{8x^3y^2}{-2xy}+\dfrac{6x^2y^3}{2xy}=-4x^2y+3xy^2\)
⇒ Chọn A.