Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=\dfrac{1}{9}.\left(999...9\right)=\dfrac{1}{9}.\left(100...0-1\right)=\dfrac{1}{9}\left(10^n-1\right)\)
\(b=100...0+5=10^n+5\)
\(\Rightarrow ab+1=\dfrac{1}{9}\left(10^n-1\right)\left(10^n+5\right)+1=\dfrac{1}{9}\left(10^{2n}+4.10^n+4\right)=\dfrac{1}{9}\left(10^n+2\right)^2\)
\(=\left(\dfrac{10^n+2}{3}\right)^2\)
Ta có: \(10\equiv1\left(mod3\right)\Rightarrow10^n\equiv1\left(mod3\right)\)
\(\Rightarrow10^n+2⋮3\)
\(\Rightarrow\dfrac{10^n+2}{3}\in Z\)
\(\Rightarrow\left(\dfrac{10^n+2}{3}\right)^2\) là SCP hay \(ab+1\) là SCP
a) \(x^3+2x^2-4x+1\)
\(=\left(x^3+3x^2-x\right)-\left(x^2+3x-1\right)\)
\(=x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)\)
\(=\left(x-1\right)\left(x^2+3x-1\right)\)
c) cho da thuc P(x) =2x^4-7x^3 -2x^2 +13x +6? | Yahoo Hỏi & Đáp
Tham khảo
Em chào chị,em lớp 6 ko hiểu gì cả chỉ ngó qua thôi
có nick face ko?? có thì kb vs tui, tui chỉ cho
Từ hằng đẳng thức của đề bài,dễ thấy:
\(2^3=\left(1+1\right)^3=1^3+3.1^2+3.1+1\)
\(3^3=\left(2+1\right)^3=2^3+3.2^2+3.2+1\)
\(4^3=\left(3+1\right)^3=3^3+3.3^2+3.3+1\)
\(..........\)
\(\left(n+1\right)^3=n^3+3n^2+3n+1\)
Cộng từng vế của n đẳng thức trên ta được:
\(2^3+3^3+4^3+....+\left(n+1\right)^3=\)\(\left(1^3+3.1^2+3.1+1\right)+\left(2^3+3.2^2+3.2+1\right)+...+\left(n^3+3n^2+3n+1\right)\)
\(\Rightarrow\left(n+1\right)^3=1^3+3\left(1^2+2^2+....+n^2\right)+3\left(1+2+...+n\right)+n\)
\(\Rightarrow3\left(1^2+2^2+...+n^2\right)=\left(n+1\right)^3-3\left(1+2+...+n\right)-n-1^3\)
Từ 1-> n có: n-1+1=n (số hạng)
=>\(1+2+....+n=\frac{n.\left(n+1\right)}{2}\Rightarrow3\left(1+2+..+n\right)=\frac{3n\left(n+1\right)}{2}\)
Do đó \(3\left(1^2+2^2+...+n^2\right)=\left(n+1\right)^3-\frac{3n\left(n+1\right)}{2}-\left(n+1\right)\)
\(=\left(n+1\right).\left(n+1\right)^2-\frac{3n}{2}.\left(n+1\right)-\left(n+1\right)\)
\(=\left(n+1\right).\left[\left(n+1\right)^2-\frac{3n}{2}-1\right]\)
\(=\left(n+1\right).\left[n^2+2n+1-\frac{3n}{2}-1\right]=\left(n+1\right).\left[n^2+2n-\frac{3n}{2}+1-1\right]\)
\(=\left(n+1\right)\left(n^2+\frac{n}{2}\right)=\left(n+1\right).\left(\frac{2n^2+n}{2}\right)\)
\(=\frac{\left(n+1\right).\left(2n^2+n\right)}{2}=\frac{\left(n+1\right).n.\left(2n+1\right)}{2}=\frac{1}{2}n\left(n+1\right)\left(2n+1\right)\)
\(\Rightarrow S=\frac{1}{2}n\left(n+1\right)\left(2n+1\right):3=\frac{1}{6}n\left(n+1\right)\left(2n+1\right)\)
Vậy \(S=\frac{1}{6}n\left(n+1\right)\left(2n+1\right)\)
\(x^5+1+1+1+1\) \(\ge5\sqrt[5]{x^5\cdot1\cdot1\cdot1\cdot1}=5x\)
\(y^5+1+1+1+1\ge5\sqrt[5]{y^5\cdot1\cdot1\cdot1\cdot1}=5y\)
\(\Rightarrow x^5+y^5+8\ge5x+5y=10\)
\(\Rightarrow x^5+y^5\ge2\)
Ông có im không?
1.Không im = tui báo cáo
2.Im = im mấy cái trò thân kinh dó di
Mong ông hiểu cho chớ đây no phải bệnh viện,mời ông đi chỗ khác
ok em nha