K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

+) Mệnh đề \(P \Rightarrow Q\) là: “Vì tam giác ABC đều nên tam giác ABC cân và có một góc bằng \({60^o}\)”.

+) Mệnh đề \(Q \Rightarrow P\) là: “Tam giác ABC cân và có một góc bằng \({60^o}\) suy ra tam giác ABC đều”.

Dễ thấy cả hai mệnh đề trên đều đúng.

+) Mệnh đề tương đương: (dùng một trong các cách sau:)

“Tam giác ABC đều tương đương tam giác ABC cân và có một góc bằng \({60^o}\)”

“Tam giác ABC đều là điều kiện cần và đủ để có tam giác ABC cân và có một góc bằng \({60^o}\)”

“Tam giác ABC đều khi và chỉ khi tam giác ABC cân và có một góc bằng \({60^o}\)”

“Tam giác ABC đều nếu và chỉ nếu tam giác ABC cân và có một góc bằng \({60^o}\)”

5 tháng 1 2020

Mọi tam giác cân là tam giác đều. Mệnh đề sai

5 tháng 6 2017

a) Có một hình vuông không phải là hình thoi.
Mệnh đề phủ định sai.
b) Mọi tam giác cân đều đều là tam giác đều.
Mệnh đề phủ định sai.

14 tháng 1 2017

a) Nếu ABC là một tam giác cân thì ABC là tam giác đều

Đây là mệnh đề sai

b) Nếu ABC là một tam giác cân và có một góc bằng 60o thì ABC là một tam giác đều

Đây là mệnh đề đúng

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a)

(1) “Nếu ABC là tam giác đều thì nó là tam giác cân” là mệnh đề đúng.

(2) “Nếu 2a – 4 >0 thì a > 2” là mệnh đề đúng.

b) Trong mệnh đề (1) “Nếu ABC là tam giác đều thì  là tam giác cân

P: “ABC là tam giác đều”

Q: “ABC là tam giác cân”

Trong mệnh đề (2) “Nếu 2a – 4 > 0 thì a > 2

P: “2a – 4 > 0”

Q: “a > 2”

Chú ý

Từ “” trong mênh đề (1) được hiểu là “ABC”. Do đó khi chỉ ra mệnh đề Q, ta dùng “ABC” thay cho “nó” để mệnh đề được rõ nghĩa.

CÁC BẠN GIẢI JUP MIK VỚI !! :))Bài 1: Xét tính đúng sai của các mệnh đề sau:a) Phương trình có hai nghiệm phân biệt.b) 2k là số chẵn. (k là số nguyên bất kì)c) 211 – 1 chia hết cho 11.Bài 2: Cho tứ giác ABDC: Xét hai mệnh đềP: Tứ giác ABCD là hình vuông.Q: Tứ giác ABCD là hình chữ nhật có hai đường chéo bằng vuông góc với nhau.Hãy phát biểu mệnh đề P ↔ Q bằng hai cách khác nhau, xét tính...
Đọc tiếp

CÁC BẠN GIẢI JUP MIK VỚI !! :))

Bài 1: Xét tính đúng sai của các mệnh đề sau:

a) Phương trình có hai nghiệm phân biệt.

b) 2k là số chẵn. (k là số nguyên bất kì)

c) 211 – 1 chia hết cho 11.

Bài 2: Cho tứ giác ABDC: Xét hai mệnh đề

P: Tứ giác ABCD là hình vuông.

Q: Tứ giác ABCD là hình chữ nhật có hai đường chéo bằng vuông góc với nhau.

Hãy phát biểu mệnh đề P ↔ Q bằng hai cách khác nhau, xét tính đúng sai của các mệnh đề đó.

Bài 3: Cho mệnh đề chứa biến P(n): n2 – 1 chia hết cho 4 với n là số nguyên. Xét tính đúng sai của mệnh đề khi n = 5 và n = 2.

Bài 4: Nêu mệnh đề phủ định của các mệnh đề sau:

Bài tập mệnh đề toán học lớp 10

Bài 5: Xét tính đúng sai và nêu mệnh đề phủ định của các mệnh đề:

a) Tứ giác ABCD là hình chữ nhật.

b) 16 là số chính phương.

Bài tập mệnh đề toán học lớp 10

Bài 6: Cho tứ giác ABCD và hai mệnh đề:

P: Tổng 2 góc đối của tứ giác bằng 1800;

Q: Tứ giác nội tiếp được đường tròn.

Hãy phát biểu mệnh đề kéo theo P => Q và xét tính đúng sai của mệnh đề này.

Bài 7: Cho hai mệnh đề

P: 2k là số chẵn.

Q: k là số nguyên

Hãy phát biểu mệnh đề kéo theo và xét tính đúng sai của mệnh đề.

Bài 8: Hoàn thành mệnh đề đúng:

Tam giác ABC vuông tại A nếu và chỉ nếu ...................

- Viết lại mệnh đề dưới dạng một mệnh đề tương đương.

Bài 9: Xét tính đúng sai của các mệnh đề và viết mệnh đề phủ định của các mệnh đề.

Bài tập mệnh đề toán học lớp 10

Bài 10: Xét tính đúng sai của các suy luận sau: (mệnh đề kéo theo)

Bài tập mệnh đề toán học lớp 10

Bài 11: Phát biểu điều kiện cần và đủ để một:

  • Tam giác là tam giác cân.
  • Tam giác là tam giác đều.
  • Tam giác là tam giác vuông cân.
  • Tam giác đồng dạng với tam giác khác cho trước.
  • Phương trình bậc 2 có hai nghiệm phân biệt.
  • Phương trình bậc 2 có nghiệm kép.
  • Số tự nhiên chia hết cho 2; cho 3; cho 5; cho 6; cho 9 và cho 11.

Bài 12: Chứng mình rằng: Với hai số dương a, b thì a + b ≥ 2√ab.

Bài 13: Xét tính đúng sai của mệnh đề:

Nếu một số tự nhiên chia hết cho 15 thì chia hết cho cả 3 và 5.

Bài 14: Phát biểu và chứng minh định lí sau:

a) n là số tự nhiên, n2 chia hết cho 3 thì n cũng chia hết cho 3.

b) n là số tự nhiên, n2 chia hết cho 6 thì n cũng chia hết cho cả 6; 3 và 2.

(Chứng minh bằng phản chứng)

1
HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Mệnh đề “2020 chia hết cho 3” sai.

Mệnh đề phủ định của mệnh đề này là: “2020 không chia hết cho 3”

b) Mệnh đề “\(\pi  < 3,15\)” đúng vì \(\pi  \approx 3,141592654\)

Mệnh đề phủ định của mệnh đề này là: “\(\pi  \ge 3,15\)”

c) Mệnh đề “Nước ta hiện nay có 5 thành phố trực thuộc trung ương” đúng (gồm Hà Nội, Đà Nẵng, Hải Phòng, Hồ Chí Minh và Cần Thơ)

Mệnh đề phủ định của mệnh đề này là: “Nước ta hiện nay không phải có 5 thành phố trực thuộc trung ương”

d) Mệnh đề “Tam giác có hai góc bằng \({45^o}\) là tam giác vuông cân” đúng.

Mệnh đề phủ định của mệnh đề này là: “Tam giác có hai góc bằng \({45^o}\) không phải là tam giác vuông cân”

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Phát biểu: “Tam giác ABC là tam giác vuông khi và chỉ khi tam giác ABC có một góc bằng tổng hai góc còn lại”.

Mệnh đề này đúng.

Thật vậy, giả sử ba góc của tam giác ABC lần lượt là \(x,y,z\;\) (đơn vị \({^o}\)).

Ta có: tam giác ABC có một góc bằng tổng hai góc còn lại.

Không mất tính tổng quát, giả sử: \(x=y+z\)

\(\Leftrightarrow  2x ={180^o} \) (vì \(x + y + z = {180^o}\)).

 \(\Leftrightarrow  x ={90^o}  \)

Vậy tam giác ABC vuông.