Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1;a,942^{60}-351^{37}\)
\(=\left(942^4\right)^{15}-\left(....1\right)\)
\(=\left(....6\right)^{15}-\left(...1\right)\)
\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)
\(b,99^5-98^4+97^3-96^2\)
\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)
\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)
\(2;5n-n=4n⋮4\)
a ) ( n + 5 ) . ( n + 8 ) = n . n + n . 8 + 5 . n + 5 . 8 = n^2 + 8n + 5n + 40
Nếu n là số lẻ thì n^2 cũng là số lẻ ; 5n cũng là số lẻ . Còn lại đều là số chẵn
Vậy n^2 + 5n sẽ thành số chẵn .
Chẵn + chẵn + chẵn = chẵn .
Mà số chẵn thì chi hết cho 2 .
Nếu n là số chẵn thì n^2 cũng là số chẵn ; 5n cũng là số chẵn . Vậy tổng trên tất cả đều là số chẵn
=> tổng chẵn và chia hết cho 2 .
b ) n . ( n + 4 ) . ( n + 8 ) = ( n . n + n . 4 ) . ( n . n + n . 8 ) = ( n^2 + 4n ) . ( n^2 + 8n ) = n^2 ( 8n + 4n ) = n^2 . 12n
Vì trong tích trên có 12 = 3 . 4 nên tích trên chia hết cho 3 kéo theo n . ( n + 4 ) . ( n + 8 ) chia hết cho 3 .
Bài 2 :
a ) { x^2 - [ 6^2 - ( 8^2 - 9.7^2 )^3 - 7.5 ]^3 - 5 . 3 }^3 = 1
=> x^2 - [ 6^2 - ( 8^2 - 9.7^2 )^3 - 7.5 ]^3 - 5.3 = 1
x^2 - [ 36 - ( 64 - 9.49 )^3 - 7.5 ]^3 - 5.3 = 1
x^2 - [ 36 - ( 64 - 441 )^3 - 7.5 ]^3 - 5.3 = 1
x^2 - [ 36 - ( -47897473 ) - 7.5 ]^3 - 5.3 = 1
x^2 - [ 47897509 - 7.5 ]^3 - 5.3 = 1
Phần lũy thừa này máy mình không tính được .
b ) 5^x-2 - 3^2 = 2^4
5^x-2 - 9 = 16
5^x-2 = 16 + 9
5^x-2 = 25
5^x-2 = 5^2
=> x - 2 = 2
x = 2 + 2
x = 4
a)
\(A=\frac{6^3+3.6^3+3^3}{-13}=\frac{3^3.2^3+3^3.2^2+3^3}{-13}=\frac{3^3\left(8+4+1\right)}{-13}=\frac{27.13}{-13}=-27\)
b)
A=1+5+52+53+...+550
5A=5+52+53+...551
5A-A=(5+52+53+...+551)-(1+5+52+...+550)
4A=551-1
A=\(\frac{5^{51}-1}{4}\)
c)
A=2100-299+298-...+22-2
2A=2101-2100+299-...+23-22
2A+A=(2101-2100+...+23-22)+(2100-299+...+22-2)
3A=2101-2
A=\(\frac{2^{101}-2}{3}\)
b.
\(A=1+5+5^2+5^3+...+5^{49}+5^{50}\)
\(5A=5+5^2+5^3+...+5^{50}+5^{51}\)
\(5A-A=\left(5+5^2+5^3+...+5^{50}+5^{51}\right)-\left(1+5+5^2+..+5^{50}\right)\)
\(4A=5^{51}-1\)
\(A=\frac{5^{51}-1}{4}\)
quên, còn bài chứng minh!ahihi
Bài 2:
ta có:
A = \(\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(...\right)\)( nếu vít nốt 3 số cuối thì ko đủ nên tự bn điền ha)
A =\(\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+...+\left(...\right)\)
A=\(13+3^3.13+...+3^{1998}.13\)
A=\(13.\left(1+3^3+...+3^{1998}\right)⋮13\)
suy ra A chia hết cho 13
a) đặt A =\(1+2+2^2+...+2^{99}\)
ta có:
2A = \(2+2^2+2^3+...+2^{99}+2^{100}\)
2A-A=\(\left(2+2^2+...+2^{100}\right)-\left(1+2+...+2^{99}\right)\)
2A-A=\(2+2^2+...+2^{100}-1-2-...-2^{99}\)
A=\(2^{100}-1-2^{99}\)
ukm lâu r ko hay làm mấy bài dạng ntn nên mk quên rùi, ko pik đúng ko! v nên có sai cũng đừng ném gạch bn nhé! mấy bài sau làm tương tự!