K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2016

a ) \(\left(x+y\right)^5=x^5+5x^4y+10x^3y^2+5xy^4+y^5\)

b ) \(\left(x-3y\right)^6=\left[x+\left(-3y\right)\right]^6\)

                       \(=x^6+6x^5\left(-3y\right)+15x^4\left(-3y\right)^2+20x^3\left(-3y\right)^3+15x^2\left(-3y\right)^4+6x\left(-3y\right)^5+\left(-3y\right)^6\)

\(=x^6-18x^5y+135x^4y^2-540x^3y^3+1215x^2y^4-1458xy^5+729y^6\)

Chúc bạn học tốt ok

31 tháng 10 2016

a)

b)

14 tháng 10 2018

\(\left(2x+1\right)\left(x+3\right)+\left(x+1\right)^2\left(x+2\right)+\left(x+5\right)\left(x+1\right)\)

\(=2x^2+6x+x+3+x^3+2x^2+x+2x^2+4x+2+x^2+x+5x+5\)

\(=x^3+7x^2+18x+10\)

đúng ko nhỉ?

14 tháng 10 2018

tham khảo : KHAI TRIỂN RÚT GỌN ĐA THỨC BẰNG CASIO (1LINK DUY NHẤT) - YouTube

1 tháng 8 2019

a, \(25x^2+30xy+9y^2\)

b, \(x^2-4xy+4y^2\)

1 tháng 8 2019

c(2x3)2 = \(4x^2-12x+9\)

20 tháng 6 2018

a) \(\left(2x^3y-0,5x^2\right)^3\)

\(=\left(2x^3y\right)^3-3\left(2x^3y\right)^20,5x^2+3.2x^3y\left(0,5x^2\right)^2-\left(0,5x^2\right)^3\)

\(=8x^9y^3-6x^8y^2+1,5x^7y-0,125x^6\)

b) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)

\(=x^3-\left(3y\right)^3\)

\(=x^3-27y^3\)

c) \(\left(x^2-3\right)\left(x^4+3x^2+9\right)\)

\(=x^3-3^3\)

\(=x^3-27.\)

19 tháng 6 2018

a,\(\left(2x^3y-0,5x^2\right)^3=\left(2x^3y\right)^3-3.\left(2x^3y\right)^2.\left(0,5x^2\right)+3.\left(0,5x^2\right)^2.\left(2x^3y\right)-\left(0,5x^2\right)^3\)

\(=8x^9y^3-6x^8y^2+\frac{3}{2}x^7y-\frac{1}{8}x^6\)

b,\(\left(x-3y\right)\left(x^2+3xy+9y^2\right)=\left(x-3y\right)\left[x^2+x.3y+\left(3y\right)^2\right]\)

\(=x^3-\left(3y\right)^3=x^3-27y^3\)

\(\left(x^2-3\right)\left(x^4+3x^2+9\right)=\left(x^2-3\right)\left[\left(x^2\right)^2+3.x^2+3^2\right]\)

\(=\left(x^2\right)^3-3^3=x^6-27\)

19 tháng 7 2017

a, (x+y+z)2

=\(x^2+y^2+z^2+2xy+2xz+2yz\)

b, (x+yz)2

=\(x^2+y^2+z^2+2xy-2xz-2yz\)

c, (xyz)2

=\(x^2+y^2+z^2-2xy-2xz+2yz\)

chúc bạn học tốt ạ

19 tháng 7 2017

a) Ta có: \(\left(x+y+z\right)^2=\left[\left(x+y\right)+z\right]^2\)

\(=\left(x+y\right)^2+2\left(x+y\right)z+z^2\)

\(=x^2+2xy+y^2+2xz+2yz+z^2\)

\(=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

b) Ta có: \(\left(x+y-z\right)^2=\left[\left(x+y\right)-z\right]^2\)

\(=\left(x+y\right)^2-2\left(x+y\right)z+z^2\)

\(=x^2+2xy+y^2-2xz-2yz+z^2\)

\(=x^2+y^2+z^2+2\left(xy-yz-zx\right)\)

c) Ta có: \(\left(x-y-z\right)^2=\left[\left(x-y\right)-z\right]^2\)

\(=\left(x-y\right)^2-2\left(x-y\right)z+z^2\)

\(=x^2-2xy+y^2-2xz-2yz+z^2\)

\(=x^2+y^2+z^2-2\left(xy+yz+zx\right)\)

11 tháng 6 2018

a) \(\left(2x^2-1\right)^2\)

\(=4x^4-4x^2+1\)

b)\(\left(\dfrac{1}{2}x+3y^2\right)^2\)

\(=\dfrac{1}{4}x^2+3xy^2+9y^4\)

 

11 tháng 6 2018

a) \(\left(2x^2-1\right)^2=\left(2x^2\right)^2-2.2x^2.1+1^2\)

\(=4x^4-4x^2+1\).

b) \(\left(\frac{1}{2}x+3y^2\right)^2=\left(\frac{1}{2}x\right)^2+2.\frac{1}{2}x.3y^2+\left(3y^2\right)^2\)

\(=\frac{1}{4}x^2+3y^2x+9y^4\)

Chúc bn hc tốt!

1 tháng 10 2020

a, \(\left(3-x\right)^2=9-6x+x^2\)

b, \(\left(x-\frac{1}{2}\right)^2=x^2-x+\frac{1}{4}\)

c, \(\left(2x+y\right)^2=4x^2+4xy+y^2\)

21 tháng 6 2017

a) = (x+1-x+1)(x2+2x+1+x2-1+x2-2x+1)- 6(x2-1)

   = 2( 3x2+1)- 6(x2-1)

   = 2( 3x2+1-3x2+3)

   =2. 4

   =8