Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5:
a: (2x-5)(2x+5)=4x^2-25
b: (3x-5y)(3x+5y)=9x^2-25y^2
c: (3x+7y)(3x-7y)=9x^2-49y^2
d: (2x-1)(2x+1)=4x^2-1
4:
a: 2003*2005=(2004-1)(2004+1)=2004^2-1<2004^2
b: 8(7^2+1)(7^4+1)(7^8+1)
=1/6*(7-1)(7+1)(7^2+1)(7^4+1)(7^8+1)
=1/6(7^2-1)(7^2+1)(7^4+1)(7^8+1)
=1/6(7^16-1)<7^16-1
5:
a: (2x-5)(2x+5)=4x^2-25
b: (3x-5y)(3x+5y)=9x^2-25y^2
c: (3x+7y)(3x-7y)=9x^2-49y^2
d: (2x-1)(2x+1)=4x^2-1
mik chỉ biết bài 5 thôi !
(a+b+c)(a+b-c)
=[(a+b) + c] [ (a+b) - c]
= (a+b)2 - c2
Áp dụng HĐT: (A-B)(A+B) = A2 - B2
(a+b+c).(a+b-c)
=( a+b )^2 - c^2
= a^2 + 2ab + b^2 - c^2
1) \(\left[\left(a+b\right)-c\right]^2=\left(a+b\right)^2-2c\left(a+b\right)+c^2\)
\(=\left(a^2+2ab+b^2\right)-2ac-2bc+c^2\)
\(=a^2+b^2+c^2+2ab-2ac-2bc\)
2)Phần này tg tự
3)\(\left(x+y+z\right)\left(x+y-z\right)=\left(x+y\right)^2-z^2=x^2+2xy+y^2-z^2\)
\(a,\left(x+2\right)^2=x^2+4x+4\\ b,\left(x-1\right)^2=x^2-2x+1\\ c,\left(x^2+y^2\right)^2=x^4+2x^2y^2+y^4\)
a) \(\left(2x-3y\right)^2=4x^2-12xy+9y^2\)
b) \(\left(5p-q\right)^2=25p^2-10pq+q^2\)
c) \(\left(-a-b\right)^2=-a^2-2ab-b^2\)
d) \(\left(1+3s\right)^2=1+6s+9s^2\)
e) \(\left(a^2b+2b\right)^2=a^4b^2+4a^2b^2+4b^2\)
f) \(\left(3u-v\right)^3=27u^3-27u^2v+9uv^2-v^3\)
a,\(\left(2x-3y\right)=\left(2x\right)^2-2.2x.3y+\left(3y\right)^2\)
=\(4x^2-12xy+6y^2\)
b,\(\left(5p-q\right)^2=\left(5p\right)^2-2.5p.q+q^2\)
=\(25p^2-10pq+q^2\)
c,(-a-b)\(^2=\left(-a\right)^2-2.\left(-a\right).b+b^2\)
=\(a^2+2ab+b^2\)
d,\(\left(1+3s\right)^2=1+6s+9s^2\)
e,(a\(^2b+2b)^2=(a^2b)^2+2.a^2b.2b^2+\left(2b\right)^2\)
=\(a^4b^2+4a^2b^2+4b^2\)
f,\(\left(3u-v\right)^3=27u^3-27u^2v+9uv^2-v^3\)
Ta có:(a2+ab+b2)(a2-ab+b2)-(a4+b4)
= (a2+b2)2-a2b2-a4-b4=a4+2a2b2+b4-a2b2-a4-b4=a2b2
Ta có:(a2+ab+b2)(a2-ab+b2)-(a4+b4)
= (a2+b2)2-a2b2-a4-b4=a4+2a2b2+b4-a2b2-a4-b4=a2b2
\(\left(3x-2\right)^3=\left(3x\right)^3-3.\left(3x\right)^2.2+3.3x.2^2-2^3=27x^3-54x^2+36x-8\)
\(8x^3-27=\left(2x\right)^3-3^3=\left(2x-3\right)\left[\left(2x\right)^2+2x.3+3^2\right]=\left(2x-3\right)\left(4x^2+6x+9\right)\)
\(\left(x^2-3\right)\left(x^4+3x^2+9\right)=\left(x^2-3\right)\left[\left(x^2\right)^2+x^2.3+3^2\right]=x^6-27\)
a,
b,
a,
b,