K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2018

Câu 1:

(3x+1)2_(x-2)2

=[(3x)2+2×3x×1+13]-[x2+2×x×2+22]

=(9x2+6x+1)-(x2+4x+4)

=9x2+6x+11-x2-4x-4

12 tháng 9 2018

Câu 2 :

(y-3)2-(y-1)2

=(y2-2×y×3+32)-(y2+2×y×1+1)

= y2-6y+99-y2-2y-1

30 tháng 7 2019

\(a,\left(3x+1\right)^3=9x^3+9x^2+9x+1\)

\(b,\left(\frac{2}{3}x+1\right)^2=\frac{4}{9}x^2+\frac{4}{3}x+1\)

\(c,\left(x-y\right)^2-\left(x+y\right)^2=\left(x-y-x-y\right)\left(x-y+x+y\right)=-2y\cdot2x=-4xy\)

\(d,\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y\cdot2x=4xy\)

22 tháng 8 2020

a) \(\left(x+2y\right)^2=x^2+4xy+4y^2\)

b) \(\left(3x-\frac{1}{8}y\right)^2=9x^2-\frac{3}{4}xy+\frac{1}{64}y^2\)

c) \(\left(-6x-\frac{2}{5}\right)^2=36x^2+\frac{24}{5}x+\frac{4}{25}\)

d) \(\left(xy^2+1\right)\left(xy^2-1\right)=x^2y^4-1\)

e) \(\left(x-y\right)^2\left(x+y\right)^2=\left(x^2-y^2\right)^2=x^4-2x^2y^2+y^4\)

f) \(\left(\frac{1}{2}x-\frac{1}{3}y-1\right)^2=\frac{1}{4}x^2+\frac{1}{9}y^2+1-\frac{1}{3}xy-x+\frac{2}{3}y\)

22 tháng 8 2020

a, \(\left(x+2y\right)^2=x^2+4xy+4y^2\)

b, \(\left(3x-\frac{1}{8}y\right)^2=9x^2-\frac{3}{4}xy+\frac{1}{64}y^2\)

e, \(\left(x-y\right)^2\left(x+y\right)^2=x^4-2x^2y^2+y^4\)

4 tháng 9 2020

Áp dụng công thức : (A + B)3 = A3 + 3A2B + 3AB2 + B3

(A - B)3 = A3 - 3A2B + 3AB2 -B3

a) (3x + 1)3 = (3x)3 + 3.(3x)2.1 + 3.3x.1 + 13 = 27x3 + 27x2 + 9x + 1

b) \(\left(\frac{x}{3}-1\right)^3=\left(\frac{x}{3}\right)^3-3\cdot\left(\frac{x}{3}\right)^2\cdot1+3\cdot\left(\frac{x}{3}\right)\cdot1^2-1^3\)

\(=\frac{x^3}{27}-3\cdot\frac{x^2}{9}\cdot1+3\cdot\frac{x}{3}\cdot1-1\)

\(\frac{x^3}{27}-\frac{x^2}{3}+x-1\)

c) \(\left(2x-\frac{1}{x}\right)^3=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot\frac{1}{x}+3\cdot2x\cdot\left(\frac{1}{x}\right)^2-\left(\frac{1}{x}\right)^3\)

\(=8x^3-3\cdot4x^2\cdot\frac{1}{x}+6x\cdot\frac{1}{x^2}-\frac{1}{x^3}\)

\(=8x^3-12x+\frac{6}{x}-\frac{1}{x^3}\)

d) \(\left(-y^2+3x\right)^3=\left(3x-y^2\right)^3=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot y^2+3\cdot3x\cdot y^4-y^6\)

= 27x3 - 27x2y+ 9xy4 - y6

= -y6 + 9xy4 - 27x2y2 + 27x3

Tương tự câu cuối :>

14 tháng 8 2020

a, \(\left(x+2\right)^2=x^2+4x+2^2=x^2+4x+4\)

b, \(\left(x-1\right)^2=x^2-2x+1\)

c, \(\left(x^2+y^2\right)^2=x^4+2x^2y^2+y^4\)

Dựa vào công thức làm nốt nhé 

14 tháng 8 2020

a) ( x + 2 )2 = x2 + 4x + 4

b) ( x - 1 )2 = x2 - 2x + 1

c) ( x2 + y2 )2 = x4 + 2x2y2 + y4

d) ( x3 + 2y2 )2 = x6 + 4x3y2 + 4y4

e) ( x2 - y2 )2 = x4 - 2x2y2 + y4

f) ( x - y2 )2 = x2 - 2xy2 + y4

13 tháng 7 2019

Phần a? phải là \(4a^2-4a+1\)chứ 

a) \(4a^2-4a+1=\left(2a\right)^2+2.2a+1\)

                                 \(=\left(2a+1\right)^2\)

b) \(9x^2-25y^2=\left(3x\right)^2-\left(5y\right)^2\)

                            \(=\left(3x-5y\right)\left(3x+5y\right)\)

c) \(1-2x+a^2=\left(1-a\right)^2\)

d) \(\left(2x+1\right)-2.\left(2x+1\right)\left(3x-y\right)+\left(3x-y\right)^2\)

\(=\left[\left(2x+1\right)-\left(3x-y\right)\right]^2\)

13 tháng 7 2019

nếu có sai thì bn thông cảm

1.

b) nó là hằng đẳng thức rồi bn nhá

c) \(1-2a+a^2\)\(1^2-2a1+a^2\)=\(\left(1-a\right)^2\)

d)\(\left[\left(2x+1\right)-\left(3x-y\right)\right]^2\)=\(\left(2x+1-3x+y\right)^2\)=\(\left(1-x+y\right)^2\)

2.

a)\(\left(\frac{1}{2}x\right)^2-\left(3y\right)^2\)=\(\left(\frac{x}{2}-3y\right)\left(\frac{x}{2}+3y\right)\)

b) Ko khai triển đc

c) \(4x^2+2xy+\frac{1}{4}y^2\)

10 tháng 7 2016

xin lỗi vì ko giúp đc zì !!! Tại ....... e ms lớp 6 à !!!! 

a) \(100x^2-\left(x^2+25\right)^2\)

\(=\left(10x-x^2-25\right)\left(10x+x^2+25\right)\)( Áp dụng hằng đẳng thức số 3 )

b) ko khai phân tích dc bạn ạ

c) 

19 tháng 9 2020

Bài 1: Khai triển các hằng đẳng thức

a) ( x - 3 )( x2 + 3x + 9 )

= x3 - 33

= x3 - 27

b) ( 5x - 1 )( 1 + 5x + 25x2 )

= ( 5x - 1 )(25x2 + 5x + 1 )

= (5x)3 - 1

= 125x3 - 1

c) ( x2 - 1 ) ( x4 + x2 + 1 )

= (x2)3 - 1

= x6 - 1


19 tháng 9 2020

a) ( x - 3 )( x2 + 3x + 9 )=x3-9

b) ( 5x - 1 ) ( 1 + 5x + 25x2 )=125x3-1

c) ( x2 - 1 ) ( x4 + x2 + 1 )=x6-1

21 tháng 7 2018

1) \(\left[\left(a+b\right)-c\right]^2=\left(a+b\right)^2-2c\left(a+b\right)+c^2\)

\(=\left(a^2+2ab+b^2\right)-2ac-2bc+c^2\)

\(=a^2+b^2+c^2+2ab-2ac-2bc\)

2)Phần này tg tự

3)\(\left(x+y+z\right)\left(x+y-z\right)=\left(x+y\right)^2-z^2=x^2+2xy+y^2-z^2\)