K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2018

MỌI NGƯỜI TRẢ LỜI GIÚP MÌNH VỚI MÌNH CẦN GẤP LẮP

10 tháng 7 2019

1,

\(\left(\frac{2}{3}x+y\right)^2=\left(\frac{2}{3}x\right)^2+2.\frac{2}{3}x.y+\left(y\right)^2=\frac{4}{9}x^2+\frac{4}{3}xy+y^2\)

\(\left(3a+\frac{1}{2}b\right)^2=\left(3a\right)^2+2.3a.\frac{1}{2}b+\left(\frac{1}{2}b\right)^2=9a^2+3ab+\frac{1}{4}b^2\)

2,

\(25a^2+4b^2+20ab=\left(5a\right)^2+\left(2b\right)^2+2.5a.2b=\left(5a+2b\right)^2\)

\(x^2+2x+1=\left(x\right)^2+2.x.1+\left(1\right)^2=\left(x+1\right)^2\)

\(9x^2+6x+1=\left(3x\right)^2+2.3x.1+\left(1\right)^2=\left(3x+1\right)^2\)

\(\left(2x+3y\right)^2+2.\left(2x+3y\right)+1=\left(2x+3y+1\right)^2\)

23 tháng 7 2018

\(x+3^2=x^2+2.x.3+3^2=x^2+6x+9\)

\(4x^{^{ }2}-9=4x^2-2.4x.9+9^2=16x^2-72x+81\)

\(\left(x-\dfrac{3}{2}\right)^2=x^2-2.x.\dfrac{3}{2}+\dfrac{3}{2}^2=x^2-3x+\dfrac{9}{4}\)

23 tháng 7 2018

\(\left(x+3\right)^2=x^2+6x+9\)

\(\left(4x^2-9\right)^2=16x^4-72x^2+81\)

\(\left(x+\dfrac{1}{2}\right)^2=x^2+x+\dfrac{1}{4}\)

\(\left(x-\dfrac{3}{2}\right)^2=x^2-3x+\dfrac{9}{4}\)

\(x^2-4=\left(x+2\right)\left(x-2\right)\)

\(x^2-289=\left(x+17\right)\left(x-17\right)\)

3 tháng 9 2018

pạn ơi pạn đã lm đk chưa? nếu lm đk oy cho mk xem cách lm bài 2 nhé. cảm ơn pạn nhìu lắm

8 tháng 7 2019

1.

a)\(\frac{4}{9}x^2+\frac{4}{3}xy+y^2\)

b)\(9a^2+3ab+\frac{1}{4}a^2\)

2.

a)\(\left(5x+2b\right)^2\)

b)\(\left(x+1\right)^2\)

c)\(\left(3x+1\right)^2\)

d)\(\left[\left(2x+3y\right)+1\right]^2\)

13 tháng 7 2019

Phần a? phải là \(4a^2-4a+1\)chứ 

a) \(4a^2-4a+1=\left(2a\right)^2+2.2a+1\)

                                 \(=\left(2a+1\right)^2\)

b) \(9x^2-25y^2=\left(3x\right)^2-\left(5y\right)^2\)

                            \(=\left(3x-5y\right)\left(3x+5y\right)\)

c) \(1-2x+a^2=\left(1-a\right)^2\)

d) \(\left(2x+1\right)-2.\left(2x+1\right)\left(3x-y\right)+\left(3x-y\right)^2\)

\(=\left[\left(2x+1\right)-\left(3x-y\right)\right]^2\)

13 tháng 7 2019

nếu có sai thì bn thông cảm

1.

b) nó là hằng đẳng thức rồi bn nhá

c) \(1-2a+a^2\)\(1^2-2a1+a^2\)=\(\left(1-a\right)^2\)

d)\(\left[\left(2x+1\right)-\left(3x-y\right)\right]^2\)=\(\left(2x+1-3x+y\right)^2\)=\(\left(1-x+y\right)^2\)

2.

a)\(\left(\frac{1}{2}x\right)^2-\left(3y\right)^2\)=\(\left(\frac{x}{2}-3y\right)\left(\frac{x}{2}+3y\right)\)

b) Ko khai triển đc

c) \(4x^2+2xy+\frac{1}{4}y^2\)

4 tháng 9 2020

Áp dụng công thức : (A + B)3 = A3 + 3A2B + 3AB2 + B3

(A - B)3 = A3 - 3A2B + 3AB2 -B3

a) (3x + 1)3 = (3x)3 + 3.(3x)2.1 + 3.3x.1 + 13 = 27x3 + 27x2 + 9x + 1

b) \(\left(\frac{x}{3}-1\right)^3=\left(\frac{x}{3}\right)^3-3\cdot\left(\frac{x}{3}\right)^2\cdot1+3\cdot\left(\frac{x}{3}\right)\cdot1^2-1^3\)

\(=\frac{x^3}{27}-3\cdot\frac{x^2}{9}\cdot1+3\cdot\frac{x}{3}\cdot1-1\)

\(\frac{x^3}{27}-\frac{x^2}{3}+x-1\)

c) \(\left(2x-\frac{1}{x}\right)^3=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot\frac{1}{x}+3\cdot2x\cdot\left(\frac{1}{x}\right)^2-\left(\frac{1}{x}\right)^3\)

\(=8x^3-3\cdot4x^2\cdot\frac{1}{x}+6x\cdot\frac{1}{x^2}-\frac{1}{x^3}\)

\(=8x^3-12x+\frac{6}{x}-\frac{1}{x^3}\)

d) \(\left(-y^2+3x\right)^3=\left(3x-y^2\right)^3=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot y^2+3\cdot3x\cdot y^4-y^6\)

= 27x3 - 27x2y+ 9xy4 - y6

= -y6 + 9xy4 - 27x2y2 + 27x3

Tương tự câu cuối :>

23 tháng 7 2018

a ) \(\left(5x+2y\right)^2=25x^2+20xy+4y^2\)

b ) \(\left(-3x+2\right)^2=9x^2-12x+4\)

c ) \(\left(\dfrac{2}{3}x+\dfrac{1}{3}y\right)^2=\dfrac{4}{9}x^2+\dfrac{4}{9}xy+\dfrac{1}{9}y^2\)

d ) \(\left(2x-\dfrac{5}{2}y\right)^2=4x^2-10xy+\dfrac{25}{4}y^2\)

e ) \(\left(x+\dfrac{4}{3}y^2\right)^2=x^2+\dfrac{8}{3}xy^2+\dfrac{16}{9}y^4\)

f ) \(\left(2x^2+\dfrac{5}{3}y\right)^2=4x^4+\dfrac{20}{3}x^2y+\dfrac{25}{9}y^2\)

7 tháng 8 2018

a) \(\dfrac{1}{8}x^3y^3-27=\left(\dfrac{1}{2}xy\right)^3-3^3=\left(\dfrac{1}{2}xy-3\right)\left(\dfrac{1}{4}x^2y^2+\dfrac{1}{6}xy+9\right)\)

b)\(\dfrac{8}{125}x^3+27y^3=\left(\dfrac{2}{5}x\right)^3+\left(3y\right)^3=\left(\dfrac{2}{5}x+3y\right)\left(\dfrac{4}{25}x^2-\dfrac{6}{5}xy+9y^2\right)\)

c) \(0.008x^6-27y^3=\left(0.2x^2\right)^3-\left(3y\right)^3=\left(0.2x^2-3y\right)\left(0.04x^4+\dfrac{3}{5}x^2y+9y^2\right)\)

d)\(\left(2x+y\right)^3-\left(x-y\right)^3=\left(2x+y-x+y\right)[\left(2x+y\right)^2+\left(2x+y\right)\left(x-y\right)+\left(x-y\right)^2]\\ =\left(x+2y\right)\left(4x^2+4xy+y^2+2x^2-2xy+xy-y^2+x^2-2xy+y^2\right)\\ =\left(x+2y\right)\left(6x^2+xy+y^2\right)\)

7 tháng 8 2018

Bài 1:

a) \(\dfrac{1}{8}x^3y^3-27\)

\(=\left(\dfrac{1}{2}xy\right)^3-3^3\)

\(=\left(\dfrac{1}{2}xy-3\right)\left[\left(\dfrac{1}{2}xy\right)^2+\dfrac{1}{2}xy.3+3^2\right]\)

\(=\left(\dfrac{1}{2}xy-3\right)\left(\dfrac{1}{4}xy+\dfrac{3}{2}xy+9\right)\)

\(=\left(\dfrac{1}{2}xy-3\right)\left(\dfrac{7}{4}xy+9\right)\)

b) \(\dfrac{8}{125}x^3+\dfrac{1}{8}y^3\)

\(=\left(\dfrac{2}{5}x\right)^3+\left(\dfrac{1}{2}y\right)^3\)

\(=\left(\dfrac{2}{5}x+\dfrac{1}{2}y\right)\left[\left(\dfrac{2}{5}x\right)^2-\dfrac{2}{5}x.\dfrac{1}{2}y+\left(\dfrac{1}{2}y\right)^2\right]\)

\(=\left(\dfrac{2}{5}x+\dfrac{1}{2}y\right)\left(\dfrac{4}{25}x-\dfrac{1}{5}xy+\dfrac{1}{4}y\right)\)

c) \(0.008x^6-27y^3\)

\(=\left(\dfrac{1}{5}x^2\right)^3-\left(3y\right)^3\)

\(=\left(\dfrac{1}{5}x^2-3y\right)\left[\left(\dfrac{1}{5}x^2\right)^2+\dfrac{1}{5}x^2.3y+\left(3y\right)^2\right]\)

\(=\left(\dfrac{1}{5}x^2-3y\right)\left(\dfrac{1}{25}x^4+\dfrac{3}{5}x^2y+9y^2\right)\)

d) \(\left(2x+y\right)^3-\left(x-y\right)^3\)

\(=\left[\left(2x+y\right)-\left(x-y\right)\right]\left[\left(2x+y\right)^2+\left(2x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=\left(2x+y-x+y\right)\left(4x^2+4xy+y^2+2x^3-2xy+xy-y^2+x^2-2xy+y^2\right)\)

\(=\left(x-2y\right)\left(4x^2+2x^3+xy\right)\)

a: \(=-\left[\left(\dfrac{1}{3}ab^2+2a^3b\right)^3\right]\)

\(=\dfrac{-1}{27}a^3b^6-3\cdot\dfrac{1}{9}a^2b^4\cdot2a^3b-3\cdot\dfrac{1}{3}ab^2\cdot4a^6b^2-8a^9b^3\)

\(=\dfrac{-1}{27}a^3b^6-\dfrac{2}{3}a^5b^5-4a^7b^4-8a^9b^3\)

b: \(=x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-1\right)\)

\(=6x^2+2-6x^2+6\)

=8