Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ghép 2 chữ số đối xứng sát nhau là được 1 hình như kết quả.
\(a,\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}=2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}\)
\(=-13\sqrt{3}\)
\(b,2\sqrt{3}.\left(\sqrt{27}+2\sqrt{48}-\sqrt{75}\right)=2\sqrt{3}\left(3\sqrt{3}+8\sqrt{3}-5\sqrt{3}\right)\)
\(=2\sqrt{3}.6\sqrt{3}=36\)
\(c,\left(2\sqrt{2}-\sqrt{3}\right)^2=8-4\sqrt{6}+3\)
\(=11-4\sqrt{6}\)
\(d,\left(1+\sqrt{3}-\sqrt{2}\right)\left(1+\sqrt{3}+\sqrt{2}\right)=1+2\sqrt{3}+3-2\)
\(=2+2\sqrt{3}\)
a) \(ĐKXĐ:x\ge1\)
\(\sqrt{x-1}=3\)
\(\Leftrightarrow\left(\sqrt{x-1}\right)^2=3^2\)
\(\Leftrightarrow x-1=9\)
\(\Leftrightarrow x=10\)
Vậy nghiệm duy nhất của pt là 10.
b)\(ĐKXĐ:x\ge3\)
\(\sqrt{x^2-6x+9}=1\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=1\)
\(\Leftrightarrow x-3=1\)
\(\Leftrightarrow x=4\)
Vậy nghiệm duy nhất của pt là 4
\(a,\sqrt{x-1}=3\)\(\text{ĐKXĐ: }x\ge1\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}=3^2\)
\(\Leftrightarrow|x-1|=9\)
\(\Leftrightarrow x-1=\pm9\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=9\\x-1=-9\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=10\text{(thỏa mãn ĐKXĐ)}\\x=-8\text{(không thỏa mãn ĐKXĐ)}\end{cases}}\)
c, \(\sqrt{9x-9}-2\sqrt{x-1}=8\left(đk:x\ge1\right)\)
\(< =>\sqrt{9\left(x-1\right)}-2\sqrt{x-1}=8\)
\(< =>\sqrt{9}.\sqrt{x-1}-2\sqrt{x-1}=8\)
\(< =>3\sqrt{x-1}-2\sqrt{x-1}=8\)
\(< =>\sqrt{x-1}=8< =>\sqrt{x-1}=\sqrt{8}^2=\left(-\sqrt{8}\right)^2\)
\(< =>\orbr{\begin{cases}x-1=8\\x-1=-8\end{cases}< =>\orbr{\begin{cases}x=9\left(tm\right)\\x=-7\left(ktm\right)\end{cases}}}\)
d, \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\left(đk:x\ge1\right)\)
\(< =>\sqrt{x-1}+\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}=4\)
\(< =>\sqrt{x-1}+\sqrt{9}.\sqrt{x-1}-\sqrt{4}.\sqrt{x-1}=4\)
\(< =>\sqrt{x-1}+3\sqrt{x-1}-2\sqrt{x-1}=4\)
\(< =>\sqrt{x-1}\left(1+3-2\right)=4< =>2\sqrt{x-1}=4\)
\(< =>\sqrt{x-1}=\frac{4}{2}=2=\sqrt{2}^2=\left(-\sqrt{2}\right)^2\)
\(< =>\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}< =>\orbr{\begin{cases}x=3\left(tm\right)\\x=-1\left(ktm\right)\end{cases}}}\)
shitbo tui là con gái. Z e hok lớp 6??
Tính chụy đây còn trẻ con lém
Đặt \(2^a=x;2^b=y;2^c=z\left(x,y,z>0\right)\)
=>\(xyz=2^{a+b+c}=1\)
Khi đó ĐPCM trở thành
\(x^3+y^3+z^3\ge x+y+z\)
Cosi \(x^3+1+1\ge3x;y^3+1+1\ge3y;z^3+1+1\ge3z\)
=> \(x^3+y^3+z^3+6\ge3\left(x+y+z\right)\)
Mà \(\)\(x+y+z\ge3\sqrt[3]{xyz}=3\)
=> \(x^3+y^3+z^3\ge x+y+z\)(ĐPCM)
Dấu bằng xảy ra khi x=y=z=1=> \(a=b=c=0\)
Trần Phúc Khang hình như chỗ \(x+y+z\ge3\)\(\Rightarrow\)\(x^3+y^3+z^3+6\ge3\left(x+y+z\right)\) ngược dấu đó anh
Cần chứng minh: \(x^3+y^3+z^3\ge x+y+z\)
\(x^3+y^3+z^3\ge\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}\ge\frac{\frac{\left(x+y+z\right)^4}{9}}{x+y+z}=\frac{\left(x+y+z\right)^3}{9}\)
Mà \(x+y+z=2^a+2^b+2^c\ge3\sqrt[3]{2^{a+b+c}}=3\)\(\Leftrightarrow\)\(\left(x+y+z\right)^2\ge9\)
\(\Leftrightarrow\)\(x+y+z\le\frac{\left(x+y+z\right)^3}{9}\le x^3+y^3+z^3\) đpcm
sai thì mn góp ý ạ
C1
Giả sử căn 7 là số hữu tỉ Vậy căn 7 bằng a/b. Suy ra 7 bằng a bình / b bình. Suy ra a bình bằng 7b bình Suy ra a chia hết cho 7 Gọi a bằng 7k suy ra a bình bằng 7b bình Suy ra (2k) bình bằng 2b bình suy ra 4k bình bằng 2b bình suy ra 2k bình bằng b bình Suy ra ƯCLN(a,b)=2 Trái với đề bài =>căn 7 là số vô tỉ
Chọn đáp án B
Ta có :