K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2015

Ghép 2 chữ số đối xứng sát nhau là được 1 hình như kết quả.

17 tháng 11 2015

vẽ hai hình chồng hoặc ghép vào nhau

 \(a,\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}=2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}\)

\(=-13\sqrt{3}\)

\(b,2\sqrt{3}.\left(\sqrt{27}+2\sqrt{48}-\sqrt{75}\right)=2\sqrt{3}\left(3\sqrt{3}+8\sqrt{3}-5\sqrt{3}\right)\)

\(=2\sqrt{3}.6\sqrt{3}=36\)

\(c,\left(2\sqrt{2}-\sqrt{3}\right)^2=8-4\sqrt{6}+3\)

\(=11-4\sqrt{6}\)

\(d,\left(1+\sqrt{3}-\sqrt{2}\right)\left(1+\sqrt{3}+\sqrt{2}\right)=1+2\sqrt{3}+3-2\)

\(=2+2\sqrt{3}\)

20 tháng 6 2019

a) \(ĐKXĐ:x\ge1\)

\(\sqrt{x-1}=3\)

\(\Leftrightarrow\left(\sqrt{x-1}\right)^2=3^2\)

\(\Leftrightarrow x-1=9\)

\(\Leftrightarrow x=10\)

Vậy nghiệm duy nhất của pt là 10.

b)\(ĐKXĐ:x\ge3\)

 \(\sqrt{x^2-6x+9}=1\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=1\)

\(\Leftrightarrow x-3=1\)

\(\Leftrightarrow x=4\)

Vậy nghiệm duy nhất của pt là 4

20 tháng 6 2019

\(a,\sqrt{x-1}=3\)\(\text{ĐKXĐ: }x\ge1\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}=3^2\)

\(\Leftrightarrow|x-1|=9\)

\(\Leftrightarrow x-1=\pm9\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=9\\x-1=-9\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=10\text{(thỏa mãn ĐKXĐ)}\\x=-8\text{(không thỏa mãn ĐKXĐ)}\end{cases}}\)

19 tháng 8 2020

c, \(\sqrt{9x-9}-2\sqrt{x-1}=8\left(đk:x\ge1\right)\)

\(< =>\sqrt{9\left(x-1\right)}-2\sqrt{x-1}=8\)

\(< =>\sqrt{9}.\sqrt{x-1}-2\sqrt{x-1}=8\)

\(< =>3\sqrt{x-1}-2\sqrt{x-1}=8\)

\(< =>\sqrt{x-1}=8< =>\sqrt{x-1}=\sqrt{8}^2=\left(-\sqrt{8}\right)^2\)

\(< =>\orbr{\begin{cases}x-1=8\\x-1=-8\end{cases}< =>\orbr{\begin{cases}x=9\left(tm\right)\\x=-7\left(ktm\right)\end{cases}}}\)

d, \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\left(đk:x\ge1\right)\)

\(< =>\sqrt{x-1}+\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}=4\)

\(< =>\sqrt{x-1}+\sqrt{9}.\sqrt{x-1}-\sqrt{4}.\sqrt{x-1}=4\)

\(< =>\sqrt{x-1}+3\sqrt{x-1}-2\sqrt{x-1}=4\)

\(< =>\sqrt{x-1}\left(1+3-2\right)=4< =>2\sqrt{x-1}=4\)

\(< =>\sqrt{x-1}=\frac{4}{2}=2=\sqrt{2}^2=\left(-\sqrt{2}\right)^2\)

\(< =>\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}< =>\orbr{\begin{cases}x=3\left(tm\right)\\x=-1\left(ktm\right)\end{cases}}}\)

20 tháng 12 2018

Thôi anh ơi em chịu lp 12

lp em.2=lp anh

20 tháng 12 2018

shitbo tui là con gái. Z e hok lớp 6??

Tính chụy đây còn trẻ con lém

7 tháng 8 2019

Đặt \(2^a=x;2^b=y;2^c=z\left(x,y,z>0\right)\)

=>\(xyz=2^{a+b+c}=1\)

Khi đó ĐPCM trở thành

\(x^3+y^3+z^3\ge x+y+z\)

Cosi \(x^3+1+1\ge3x;y^3+1+1\ge3y;z^3+1+1\ge3z\)

=> \(x^3+y^3+z^3+6\ge3\left(x+y+z\right)\)

Mà \(\)\(x+y+z\ge3\sqrt[3]{xyz}=3\)

=> \(x^3+y^3+z^3\ge x+y+z\)(ĐPCM)

Dấu bằng xảy ra khi x=y=z=1=> \(a=b=c=0\)

7 tháng 8 2019

Trần Phúc Khang hình như chỗ \(x+y+z\ge3\)\(\Rightarrow\)\(x^3+y^3+z^3+6\ge3\left(x+y+z\right)\) ngược dấu đó anh 

Cần chứng minh: \(x^3+y^3+z^3\ge x+y+z\)

\(x^3+y^3+z^3\ge\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}\ge\frac{\frac{\left(x+y+z\right)^4}{9}}{x+y+z}=\frac{\left(x+y+z\right)^3}{9}\)

Mà \(x+y+z=2^a+2^b+2^c\ge3\sqrt[3]{2^{a+b+c}}=3\)\(\Leftrightarrow\)\(\left(x+y+z\right)^2\ge9\)

\(\Leftrightarrow\)\(x+y+z\le\frac{\left(x+y+z\right)^3}{9}\le x^3+y^3+z^3\) đpcm

sai thì mn góp ý ạ 

19 tháng 8 2021
Bài 1. a) A=7/6
19 tháng 8 2021
b) √x+1 /(√x +2)(√x-1)
Câu 1. Chứng minh √7 là số vô tỉ.Câu 2.a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.Câu 4.a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: b) Cho a, b, c > 0. Chứng minh rằng: c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.Câu...
Đọc tiếp

Câu 1. Chứng minh √7 là số vô tỉ.

Câu 2.

a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.

Câu 4.

a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: 

b) Cho a, b, c > 0. Chứng minh rằng: 

c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.

Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.

Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.

Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|

Câu 9.

a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

1
24 tháng 12 2015

C1

Giả sử căn 7 là số hữu tỉ Vậy căn 7 bằng a/b.         Suy ra 7 bằng a bình / b bình.  Suy ra a bình bằng 7b bình Suy ra a chia hết cho 7 Gọi a bằng 7k suy ra a bình bằng 7b bình Suy ra (2k) bình bằng 2b bình suy ra 4k bình bằng 2b bình suy ra 2k bình bằng b bình Suy ra ƯCLN(a,b)=2 Trái với đề bài =>căn 7 là số vô tỉ

 

Câu 1. Chứng minh √7 là số vô tỉ.Câu 2.a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.Câu 4.a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: b) Cho a, b, c > 0. Chứng minh rằng: c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.Câu...
Đọc tiếp

Câu 1. Chứng minh √7 là số vô tỉ.

Câu 2.

a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.

Câu 4.

a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: 

b) Cho a, b, c > 0. Chứng minh rằng: 

c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.

Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.

Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.

Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|

Câu 9.

a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

0