Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ở lớp 10A, ta tính được
x 1 = 52 , 4 k g ; s 1 = 7 , 1 k g
Ở lớp 10B, ta tính được
x 2 = 49 k g ; s 2 = 7 , 9 k g
x 1 > x 2 , nên học sinh ở lớp 10A có khối lượng lớn hơn.
Bảng phân bố tần suất ghép lớp
Chiều cao của 120 học sinh lớp 11 trường THPT M
b) Trong số học sinh có chiều cao chưa đến 155cm, học sinh nữ đông hơn học sinh nam.
a) Tính chiều cao trung bình của học sinh nam
Cách 1 : Sử dụng bảng phân bố tần số ghép lớp :
\(\overline{x}=\dfrac{1}{60}\left(5.140+9.150+19.160+17.170+10.180\right)\)
\(\overline{x}=163\)
Cách 2 : Sử dụng bảng phân bố tần suất ghép lớp :
\(\overline{x}=\dfrac{1}{100}\left(8,33.140+15.150+31,67.160+28,33.170+16,67.180\right)\)\(\overline{x}=163\)
Tính chiều cao trung bình của học sinh nữ:
Cách 1 : Sử dụng bảng phân bố tần số ghép lớp \(\overline{x}=\dfrac{1}{60}\left(8.140+15.150+16.160+14.170+7.180\right)\)
\(\overline{x}=159,5\)
Cách 2 : Sử dụng bảng phân bố tần suất ghép lớp :
\(\overline{x}=\dfrac{1}{100}\left(13,33.140+25.150+26,67.160+23,33.170+11,67.180\right)\)
\(\overline{x}=159,5\)
b) Vì \(\overline{x}_{nam}=163>\overline{x}_{nữ}=159,5\) nên suy ra học sinh ở nhóm nam cao hơn học sinh ở nhóm nữ
c) \(\overline{x}=\left(60.159,5+60.163\right)\dfrac{1}{2}\approx161\left(cm\right)\)
Các đỉnh của đường gấp khúc tần số có tọa độ là ( c i ; n i ), với c i là giá trị đại diện của lớp thứ i, n i là tần số của lớp thứ i. Từ đó suy ra: các đỉnh của đường gấp khúc tần số là các trung điểm của các cạnh phía trên của các cột (các hình chữ nhật) của biểu đồ tần số hình cột
Đường gấp khúc I 1 I 2 I 3 I 4 I 5 I 6 với I 1 , I 2 , I 3 , I 4 , I 5 , I 6 lần lượt là trung điểm của các đoạn thẳng A 1 B 1 , A 2 B 2 , A 3 B 3 , A 4 B 4 , A 5 B 5 , A 6 B 6
Bảng phân bố tần số ghép lớp
Chiều cao của 120 học sinh lớp 11 ở trường trung học phổ thông M
Lớp chiều cao (cm) | Tần số | |
Nam | Nữ | |
[135; 145) | 5 | 8 |
[145; 155) | 9 | 15 |
[155;165) | 19 | 16 |
[165;175) | 17 | 14 |
[175; 185] | 10 | 7 |
Cộng | 60 | 60 |
Bảng phân bố tần suất ghép lớp
Lớp chiều cao (cm) | Tần suất | |
Nam | Nữ | |
[135; 145) | 8,33 | 13,33 |
[145; 155) | 15,00 | 25,00 |
[155;165) | 31,67 | 26,67 |
[165;175) | 28,33 | 23,33 |
[175; 185] | 16,67 | 11,67 |
Cộng | 100% | 100% |
a)
b)
+) Lớp 10A
Số trung bình \(\overline x = \frac{{5.1 + 6.4 + 7.5 + 8.8 + 9.14 + 10.8}}{{1 + 4 + 5 + 8 + 14 + 8}} = 8,35\)
Sắp sếp số liệu theo thứ tự không giảm, ta được: \(5,6,6,6,6,7,7,7,7,7,\underbrace {8,...,8}_8,\underbrace {9,...,9}_{14},\underbrace {10,...,10}_8\)
Do \(n = 40\), là số chẵn nên trung vị là: \({M_e} = \frac{1}{2}(9 + 9) = 9\)
Mốt \({M_e} = 9\)
+) Lớp 10B
Số trung bình \(\overline x = \frac{{5.4 + 6.6 + 7.10 + 8.10 + 9.6 + 10.4}}{{4 + 6 + 10 + 10 + 6 + 4}} = 7,5\)
Sắp sếp số liệu theo thứ tự không giảm, ta được: \(5,5,5,5,\underbrace {6,..,6}_6,\underbrace {7,...,7}_{10},\underbrace {8,...,8}_{10},\underbrace {9,...,9}_6,10,10,10,10\)
Do \(n = 40\), là số chẵn nên trung vị là: \({M_e} = \frac{1}{2}(7 + 8) = 7,5\)
Mốt \({M_e} = 7;{M_e} = 8.\)
+) Lớp 10C
Số trung bình \(\overline x = \frac{{5.1 + 6.3 + 7.17 + 8.11 + 9.6 + 10.2}}{{1 + 3 + 17 + 11 + 6 + 2}} = 7,6\)
Sắp sếp số liệu theo thứ tự không giảm, ta được: \(5,6,6,6,\underbrace {7,...,7}_{17},\underbrace {8,...,8}_{11},\underbrace {9,...,9}_6,10,10\)
Do \(n = 40\), là số chẵn nên trung vị là: \({M_e} = \frac{1}{2}(7 + 7) = 7\)
Mốt \({M_e} = 7\)
+) So sánh:
Số trung bình: \(8,35 > 7,6 > 7,5\) => Điểm số của HS các lớp theo thứ tự giảm dần là 10A, 10C, 10B.
Số trung vị: \(9 > 7,5 > 7\)=> Điểm số của HS các lớp theo thứ tự giảm dần là 10A, 10B, 10C.
Mốt: Lớp 10A có 14 điểm 9, Lớp 10B có 10 điểm 7 và 10 điểm 8, Lớp 10C có 17 điểm 7. Do đó so sánh theo mốt thì điểm số các lớp giảm dàn theo thứ tự là: 10A, 10B, 10C.