K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2016
  • khi a+b+c \(\ne0\) ta có :

​x = \(\frac{a+b+c}{\left(b+c\right)+\left(c+a\right)+\left(a+b\right)}\)\(=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

  • khi a+b+c = 0 thì

a= -(b+c); b= -(a+c); c= -(a+b)

nên: x=\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=-1\)

6 tháng 10 2016

Bạn làm đúng rồi :)

19 tháng 12 2016

a) Giải:

Ta có: \(a,b,c>0\Rightarrow a+b+c>0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}=\frac{a+b+c}{2b+c+2c+a+2a+b}=\frac{a+b+c}{3a+3b+3c}=\frac{a+b+c}{3\left(a+b+c\right)}=\frac{1}{3}\)

Vậy \(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}=\frac{1}{3}\)

 

 

19 tháng 12 2016

mk cần phần b cơ. Phần a biết làm từ lâu rùi.

23 tháng 10 2019

Bài 1:

a) \(\frac{x-3}{x+5}=\frac{5}{7}\)

\(\Rightarrow\left(x-3\right).7=\left(x+5\right).5\)

\(\Rightarrow7x-21=5x+25\)

\(\Rightarrow7x-5x=25+21\)

\(\Rightarrow2x=46\)

\(\Rightarrow x=46:2\)

\(\Rightarrow x=23\)

Vậy \(x=23.\)

b) \(\frac{7}{x-1}=\frac{x+1}{9}\)

\(\Rightarrow\left(x+1\right).\left(x-1\right)=7.9\)

\(\Rightarrow x^2-x+x-1=63\)

\(\Rightarrow x^2-1=63\)

\(\Rightarrow x^2=63+1\)

\(\Rightarrow x^2=64\)

\(\Rightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)

Vậy \(x\in\left\{8;-8\right\}.\)

c) \(\frac{x+4}{20}=\frac{5}{x+4}\)

\(\Rightarrow\left(x+4\right).\left(x+4\right)=5.20\)

\(\Rightarrow\left(x+4\right).\left(x+4\right)=100\)

\(\Rightarrow\left(x+4\right)^2=100\)

\(\Rightarrow x+4=\pm10.\)

\(\Rightarrow\left[{}\begin{matrix}x+4=10\\x+4=-10\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10-4\\x=\left(-10\right)-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6\\x=-14\end{matrix}\right.\)

Vậy \(x\in\left\{6;-14\right\}.\)

Bài 2:

Ta có: \(\frac{a+5}{a-5}=\frac{b+6}{b-6}.\)

\(\Rightarrow\frac{a+5}{b+6}=\frac{a-5}{b-6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a+5}{b+6}=\frac{a-5}{b-6}=\frac{\left(a+5\right)+\left(a-5\right)}{\left(b+6\right)+\left(b-6\right)}=\frac{\left(a+a\right)+\left(5-5\right)}{\left(b+b\right)+\left(6-6\right)}=\frac{2a}{2b}=\frac{a}{b}\) (1)

\(\frac{a+5}{b+6}=\frac{a-5}{b-6}=\frac{\left(a+5\right)-\left(a-5\right)}{\left(b+6\right)-\left(b-6\right)}=\frac{\left(a-a\right)+\left(5+5\right)}{\left(b-b\right)+\left(6+6\right)}=\frac{10}{12}=\frac{5}{6}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{5}{6}\left(đpcm\right).\)

Chúc em học tốt!

29 tháng 10 2019

Không có gì nhé em. haha Contrim Đẹptrai

18 tháng 9 2019

Câu 2:

Ta có \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{b}=\frac{2c}{2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{2c}{2d}=\frac{a+2c}{b+2d}=\frac{a+c}{b+d}.\)

\(\Rightarrow\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\left(đpcm\right).\)

Chúc bạn học tốt!

19 tháng 9 2019

thank you so much

4 tháng 9 2019

Bài 1:

Ta có: \(\frac{a}{5}=\frac{b}{3}\Rightarrow\frac{a}{25}=\frac{b}{15}.\)

\(\frac{b}{5}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{12}.\)

=> \(\frac{a}{25}=\frac{b}{15}=\frac{c}{12}\)\(a-b+c=147.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{25}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{25-15+12}=\frac{147}{22}.\)

\(\left\{{}\begin{matrix}\frac{a}{25}=\frac{147}{22}\Rightarrow a=\frac{147}{22}.25=\frac{3675}{22}\\\frac{b}{15}=\frac{147}{22}\Rightarrow b=\frac{147}{22}.15=\frac{2205}{22}\\\frac{c}{12}=\frac{147}{22}\Rightarrow c=\frac{147}{22}.12=\frac{882}{11}\end{matrix}\right.\)

Vậy \(\left(a;b;c\right)=\left(\frac{3675}{22};\frac{2205}{22};\frac{882}{11}\right).\)

Mình chỉ làm bài 1 thôi nhé.

Chúc bạn học tốt!

4 tháng 9 2019

Bài 2:

Đặt \(A=\left|x-2001\right|+\left|x-2\right|\)

\(\Rightarrow A=\left|2001-x\right|+\left|x-2\right|\left(\text{vì }\left|x-2001\right|=\left|2001-x\right|\text{với mọi x}\in Q\right)\)

Có: \(\left|2001-x\right|\ge2001-x\); \(\left|x-2\right|\ge x-2\)

\(\Rightarrow\left|2001-x\right|+\left|x-2\right|\ge2001-x+x-2\\ \Rightarrow A\ge2001-2=1999\)

Vậy GTNN của | x - 2001 | + | x - 2 | = 1999

\("="\Leftrightarrow\left\{{}\begin{matrix}\left|2001-x\right|=2001-x\\\left|x-2\right|=x-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2001-x\ge0\\x-2\ge0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x\le2001\\x\ge2\end{matrix}\right.\\ \Leftrightarrow2\le x\le2001\)

9 tháng 11 2016

1)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow ac-ad=ac-bc\Leftrightarrow a\left(c-d\right)=c\left(a-b\right)\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

2) Gọi độ dài các cạnh của tam giác đó là a,b,c thì a : b : c = 3 : 4 : 5 ; a + b + c = 36

\(\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3\Rightarrow\hept{\begin{cases}a=3.3=9\\b=3.4=12\\c=3.5=15\end{cases}}\).Vậy tam giác đó có 3 cạnh là 9 cm ; 12 cm ; 15 cm

3)\(\hept{\begin{cases}a:b:c:d=3:4:5:6\\a+b+c+d=3,6\end{cases}\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{d}{6}=\frac{a+b+c+d}{3+4+5+6}=\frac{3,6}{18}=0,2}\)

=> a = 0,2.3 = 0,6 ; b = 0,2.4 = 0,8 ; c = 0,2.5 = 1 ; d = 0,2.6 = 1,2

4)\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{3}:5=\frac{y}{2}:5\Leftrightarrow\frac{x}{15}=\frac{y}{10}\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}:2=\frac{z}{7}:2\Leftrightarrow\frac{y}{10}=\frac{z}{14}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{14}=\frac{x+y+z}{15+10+14}=\frac{184}{39}=4\frac{28}{39}\Rightarrow\hept{\begin{cases}x=4\frac{28}{39}.15=70\frac{10}{13}\\y=4\frac{28}{39}.10=47\frac{7}{39}\\z=4\frac{28}{39}.14=66\frac{2}{39}\end{cases}}\)

9 tháng 11 2016

câu 3,4 bạn làm tỉ lệ thức là xong

21 tháng 10 2016

1)Ta có:\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}\)(đpcm)

21 tháng 10 2016

Ta có:A=\(\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{c+a}\)

\(\Rightarrow A=\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{a+c}=\frac{a+c+b}{b+c+a+b+a+c}\)\(\Rightarrow A=\frac{a+b+c}{2a+2b+2c}=\frac{\left(a+b+c\right)}{2\left(a+b+c\right)}=\frac{1}{2}\)

Vậy A=\(\frac{1}{2}\)

17 tháng 10 2017

a)\(\left(x-\frac{1}{2}\right)^{2016},\left|\frac{3}{4}-y\right|\ge0\)

\(\left(x-\frac{1}{2}\right)^{2016}+\left|\frac{3}{4}-y\right|=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x-\frac{1}{2}\right)^{2016}=0\\\left|\frac{3}{4}-y\right|=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{2}=0\\\frac{3}{4}-y=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}\end{cases}}\)

b)\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}\)

\(\Rightarrow\frac{b+c}{a}-\frac{a+c}{b}-\frac{a+b}{c}=0\)