Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(A=\dfrac{3}{2\left(x+1\right)}+\dfrac{10x}{2\left(x-1\right)\left(x+1\right)}-\dfrac{5}{2\left(x-1\right)}\)
\(=\dfrac{3x-3+10x-5x-5}{2\left(x-1\right)\left(x+1\right)}=\dfrac{8x-8}{2\left(x-1\right)\left(x+1\right)}=\dfrac{4}{x+1}\)
b: Để P/2=3/x^2+2 thì \(\dfrac{4}{2x+2}=\dfrac{3}{x^2+2}\)
\(\Leftrightarrow\dfrac{2}{x+1}=\dfrac{3}{x^2+2}\)
=>\(2x^2+4-3x-3=0\)
=>2x^2-3x+1=0
=>(x-1)(2x-1)=0
=>x=1/2(nhận) hoặc x=1(loại)
a) \(A = \frac{2x^2 - 16x+43}{x^2-8x+22}\) = \(\frac{2(x^2-8x+22)-1}{x^2-8x+22}\) = \(2 - \frac{1}{x^2-8x+22}\)
Ta có : \(x^2-8x+22 \) = \(x^2-8x+16+6 = ( x-4)^2 +6 \)
Vì \((x-4)^2 \ge 0 \) với \( \forall x\in R\) Nên \(( x-4)^2 +6 \ge 6 \)
\(\Rightarrow \) \(x^2-8x+22 \) \( \ge 6\)\(\Rightarrow \) \(\frac{1}{x^2-8x+22} \) \(\le \frac{1}{6}\) \(\Rightarrow \) - \(\frac{1}{x^2-8x+22} \) \(\ge - \frac{1}{6}\)
\(\Rightarrow \) A = \(2 - \frac{1}{x^2-8x+22}\) \( \ge 2-\frac{1}{6}\) = \(\frac{11}{6}\) Dấu "=" xảy ra khi và chỉ khi x=4
Vậy GTNN của A = \(\frac{11}{6}\) khi và chỉ khi x=4
1.
a) \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
b) \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Bài 1:
a, \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
Vậy \(x=-4\) hoặc \(x=-1\)
b, \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x=3\) hoặc \(x=-2\)
Câu 1:
a: Để M là số nguyên thì \(2x^3-6x^2+x-3-5⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{4;2;8;-2\right\}\)
b: Để N là số nguyên thì \(3x^2+2x-3x-2+5⋮3x+2\)
\(\Leftrightarrow3x+2\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{-\dfrac{1}{3};-1;1;-\dfrac{7}{3}\right\}\)
Bài 2:
\(A=\dfrac{5x^3+5x}{x^4-1}=\dfrac{5x\left(x^2+1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)
.....= \(\dfrac{5x}{x^2-1}\)
\(B=\dfrac{x^2+5x+6}{x^2+6x+9}=\dfrac{x^2+2x+3x+6}{\left(x+3\right)^2}\)
.....= \(\dfrac{x\left(x+2\right)+3\left(x+2\right)}{\left(x+3\right)^2}=\dfrac{\left(x+2\right)\left(x+3\right)}{\left(x+3\right)^2}\)
.....= \(\dfrac{x+2}{x+3}\)
Câu 1:
B = \(\dfrac{32x-8x^2+2x^3}{x^3+64}\)
....= \(\dfrac{2x\left(x^2-4x+16\right)}{\left(x+4\right)\left(x^2-4x+16\right)}=\dfrac{2x}{x+4}\)
1: \(\Leftrightarrow\left(x+2\right)\left(x-2\right)+3\left(x+1\right)=3+x^2-x-2\)
\(\Leftrightarrow x^2-x+1=x^2-4+3x+3=x^2+3x-1\)
=>-4x=-2
hay x=1/2
2: \(\Leftrightarrow\left(x+6\right)^2+\left(x-5\right)^2=2x^2+23x+61\)
\(\Leftrightarrow x^2+12x+36+x^2-10x+25=2x^2+23x+61\)
\(\Leftrightarrow2x^2+23x+61=2x^2+2x+11\)
=>21x=-50
hay x=-50/21
3: \(\Leftrightarrow6\left(x-8\right)+\left(x+2\right)\left(x-5\right)=-18-\left(x-5\right)\left(x-8\right)\)
\(\Leftrightarrow6x-48+x^2-3x-10+18+x^2-13x+40=0\)
\(\Leftrightarrow2x^2-10x=0\)
=>2x(x-5)=0
=>x=0(nhận) hoặc x=5(loại)
Bài 3:
a) (3x - 2)(4x + 5)=0
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2=0\\4x+5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{-5}{4}\end{matrix}\right.\)
vậy phương trình có tập ngiệm S={\(\dfrac{-5}{4};\dfrac{2}{3}\)}
b) 2x(x-3)-5(x-3)=0
\(\Leftrightarrow\left(x-3\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\2x-5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=\dfrac{5}{2}\end{matrix}\right.\)
vậy phương trình có tập ngiệm S={\(3;\dfrac{5}{2}\)}
c) 2x(x + 3) + 5(x + 3)=0
\(\Leftrightarrow\left(x+3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3=0\\2x+5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=\dfrac{-5}{2}\end{matrix}\right.\)
vậy phương trình có tập ngiệm S={\(-3;\dfrac{-5}{2}\)}
Bài 1: Ta có: \(B=\dfrac{4+2\left|4-2x\right|}{5}\)
Do \(\left|4-2x\right|\ge0\left(\forall x\right)\Rightarrow2\left|4-2x\right|\ge0\left(\forall x\right)\)
Dấu "=" xảy ra \(\Leftrightarrow\left|4-2x\right|=0\Leftrightarrow x=2\)
\(\Rightarrow MinB=\dfrac{4+2.0}{5}=\dfrac{4}{5}\)
Vậy GTNN của \(B=\dfrac{4}{5}\Leftrightarrow x=2\)
Bài 2:a, \(A=\dfrac{12}{3+\left|5x+1\right|+\left|2y-1\right|}\)
Do \(\left|5x+1\right|\ge0\left(\forall x\right);\left|2y-1\right|\ge0\left(\forall y\right)\)
Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{5};y=\dfrac{1}{2}\)
\(\Rightarrow\left|5x+1\right|+\left|2y-1\right|\ge0\left(\forall x;y\right)\)
\(\Rightarrow3+\left|5x+1\right|+\left|2y-1\right|\ge3\left(\forall x;y\right)\)
\(\Rightarrow\dfrac{1}{3+\left|5x+1\right|+\left|2y-1\right|}\le\dfrac{1}{3}\left(\forall x;y\right)\)
\(\Rightarrow A=\dfrac{12}{3+\left|5x+1\right|+\left|2y-1\right|}\le4\left(\forall x;y\right)\)
Vậy Max A = 4 \(\Leftrightarrow x=-\dfrac{1}{5};y=\dfrac{1}{2}\)
b, \(B=\dfrac{5}{\left(4x^2+4x+1\right)+\left(y^2+2y+1\right)+1}=\dfrac{5}{\left(2x+1\right)^2+\left(y+1\right)^2+1}\)Bn tự cm: \(\left(2x+1\right)^2+\left(y+1\right)^2+1\ge1\left(\forall x;y\right)\)
Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{2};y=-1\)
Vậy ta cx dễ dàng tìm được: Max\(B=\dfrac{5}{0+0+1}=5\) \(\Leftrightarrow x=-\dfrac{1}{2};y=-1\)
a ) Để \(\dfrac{3}{-x^2+2x+4}\) đạt GTlN thì :
\(-x^2+2x+4\) phải đạt GTNN ( chắc ai cũng biết )
Ta có :
\(-x^2+2x+4\)
\(=-\left(x^2-2x+1-5\right)\)
\(=-\left(x-1\right)^2-5\)
Tới đây chắc bạn hỉu rồi nhỉ ?
Mình cảm ơn bạn nhiều nhé.