K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2019

2k3 thì đã giải được toán 8 rồi, bị già đi 4 tuổi :(( *Buồn*

25 tháng 7 2019

Em cần cả hai phần luôn ạ, nhìn bài này lạ quá :(

25 tháng 7 2019

Cậu ới ời ơi

25 tháng 7 2019

\(x\le-2\)

10 tháng 1 2018

Điều kiên (x<>1,X>0) xong rút gọn đi :)))

10 tháng 1 2018

TRẢ LỜI HẾT MAU :(

10 tháng 8 2021

Bài 1 : Với : \(x>0;x\ne1\)

\(P=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}\right).\sqrt{x}\left(\sqrt{x}-1\right)=x\)

Thay vào ta được : \(P=x=25\)

10 tháng 8 2021

Bài 2 : 

a, Với \(x\ge0;x\ne1\)

\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}\)

\(=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)

Thay x = 9 vào A ta được : \(\frac{3}{3+1}=\frac{3}{4}\)

13 tháng 6 2018

a, \(M=\sqrt{x^2-4x+4}-\sqrt{x^2+4x+4}\)      (ĐK : \(\forall x\in R\))

           \(=\sqrt{\left(x-2\right)^2}-\sqrt{\left(x+2\right)^2}\)

     * Nếu x\(\ge2\Rightarrow M=x-2-x-2=-4\)

     *Nếu x<2   => M=2-x-x-2=-2x

b,Để M=2\(\ne-4\)

     =>M=-2x

    =>-2x=-4

    =>x=2

__________________________________________________________________________________________

P=\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)

  \(=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)

    \(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}\)

     * Nếu \(x\ge2\Rightarrow P=\sqrt{x-1}+1+\sqrt{x-1}-1=2\sqrt{x-1}\)

    * Nếu x<2  =>P=\(\sqrt{x-1}+1+1-\sqrt{x-1}=2\)

             VẬY.......

 Tk nha!

22 tháng 7 2018

\(1a.A=\left(\dfrac{1}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}+3}\right):\dfrac{3}{\sqrt{x}-3}=\dfrac{6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{3}=\dfrac{2}{\sqrt{x}+3}\) ( x ≥ 0 ; x # 9 )

\(b.A>\dfrac{1}{3}\)\(\dfrac{2}{\sqrt{x}+3}>\dfrac{1}{3}\text{⇔}\dfrac{3-\sqrt{x}}{3\left(\sqrt{x}+3\right)}>0\)

\(3-\sqrt{x}>0\)

\(x< 9\)

Kết hợp ĐKXĐ , ta có : \(0\text{≤}x< 9\)
\(c.\) Tìm GTLN chứ ?

\(A=\dfrac{2}{\sqrt{x}+3}\text{≤}\dfrac{2}{3}\)

\(A_{MAX}=\dfrac{2}{3}."="x=0\left(TM\right)\)

22 tháng 7 2018

\(a.VT=2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}=9=VP\)Vậy , đẳng thức được chứng minh .

\(b.VT=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\dfrac{\sqrt{3+2\sqrt{3}+1}+\sqrt{3-2\sqrt{3}+1}}{\sqrt{2}}=\dfrac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}=VP\)Vậy , đẳng thức được chứng minh .

\(c.VT=\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}=\dfrac{2\left(\sqrt{5}+2\right)-2\left(\sqrt{5}-2\right)}{5-4}=8=VP\)Vậy , đẳng thức được chứng minh .

6 tháng 3 2019

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)

\(\Rightarrow\frac{x+y+z}{xyz}=1\)\(\Rightarrow x+y+z=xyz\)

Biến đổi biểu thức dưới mẫu thành:

\(yz\left(1+x^2\right)\)\(=yz+x.\left(x+y+z\right)\)\(\)\(=\left(x+y\right)\left(x+z\right)\)

\(\frac{x}{\sqrt{xy\left(1+x^2\right)}}=\sqrt{\frac{x^2}{\left(x+y\right)\left(x+z\right)}}\) \(\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

CMTT:

\(Q\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}+\frac{z}{y+z}\right)\)

\(Q\le\frac{3}{2}\)

Dấu ''='' xảy ra \(\Leftrightarrow x=y=z=\sqrt{3}\)

6 tháng 3 2019

0000

18 tháng 1 2018

\(P=\dfrac{2}{x}-\left(\dfrac{x^2y}{xy\left(x-y\right)}+\dfrac{\left(x^2-y^2\right)\left(x-y\right)}{xy\left(x-y\right)}+\dfrac{xy^2}{xy\left(x-y\right)}\right).\dfrac{x-y}{x^2-xy+y^2}\)

\(P=\dfrac{2}{x}-\left(\dfrac{x^2y+x^3-x^2y-xy^2+y^3+xy^2}{x\left(x-y\right)}\right).\dfrac{x-y}{x^2-xy+y^2}\)\(P=\dfrac{2}{x}-\dfrac{x^3+y^3}{x\left(x-y\right)}.\dfrac{x-y}{x^2-xy+y^2}=\dfrac{2}{x}-\dfrac{\left(x-y\right)\left(x^2-xy+y^2\right)}{x\left(x-y\right)}.\dfrac{x-y}{x^2-xy+y^2}=\dfrac{2}{x}-\dfrac{x-y}{x}=\dfrac{2-x-y}{x}\)Vậy \(P=\dfrac{2-x-y}{x}\)

18 tháng 1 2018

a. Để x , y xác định thì \(x\ne0\) ; x2 - xy khác 0 ; y2 - xy khác 0 ; x - y khác 0

=> x khác 0; x(x-y) khác 0; xy khác 0 ; y(y-x) khác 0

* Với x(x-y) khác 0 => x khác 0 hoặc x - y khác 0

=> x khác 0 hoặc x khác y

* y(y-x) khác 0 suy ra y khác 0 hoặc y - x khác 0

=> x khác y

Vậy để P xác định thì x và y khác 0 ; và x khác y