K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2021

a: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

Suy ra: DA=DE

Xét ΔADF và ΔEDC có 

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

Suy ra: AF=CE

1 tháng 11 2021

A B C M N I E

a)

*AMN cân

Vì t/g ABC cân tại A (gt)

=>^B=^C

Do đó: ^ABM=^ACN

Xét t/ABM và t/gACN có

góc ^A chung

AB=AC ( vì t/g ABC cân)

^ABM=^ACN (cmt)

Nên t/gABM=t/gACN (g.c.g)

=>AM=AN (2 cạnh tương ứng = nhau)

=> tam giác ANM cân

*MN//BC

Từ tam giác ANM cân nên => ^A+^ANM+^AMN=180o

      tam giác ABC cân nên=>^A+^B+^C=180o

Mà ^B=^C 

      ^ANM=^AM 

Nên: ^C=^ANM

=>^MCN=^ANM

Mà 2 góc này lại ở vị trí so le trong

Do đó MN//BC (đpcm)

b) 

Vì t/g ABC cân tại A

^ABC=^ACB

Mà BM là tia p/g của ^ABC

      CN là tia p/g của ^ACB

do đó: ^MBC=^NCB

=> tam giác EBC cân tại E

Xét t/g AEB và t/g AEC có:

AB=AC (vì t/g ABC cân)

^ABM=^ACN (cmt)

=BE=CE (EBC cân)

=> t/gAEB=t/gAEC(c.g.c)

=>^BAE=^CAE (2 góc tương ứng = nhau)

Do đó AE là tia phân giác của t/gBAC (1)

Xét t/g AIB và t/gAIC có

AB=AC ( vì t/g ABC cân)

IB=IC (I là trung điểm BC)

=>tam giác AIB=t/gAIC (c.g.c)

=>^IAB=^IAC (2 góc tương ứng = nhau)

Do đó:AI là tia phân giác của ^BAC (2)

Từ (1) và (2) => A,I,E thằng hàng ( 2 tia phân giác của 1 góc thì thẳng hàng).

19 tháng 8 2016

A C B H M N I

a) Xét ΔAMH và ΔNMB:

  • MB=MH(M là trung điểm BH)
  • Góc HMA= Góc BMN
  • MA=MH(gt)

Vậy   ΔAMH = ΔNMB(c.g.c)

Suy ra Góc AHM= Góc MBN(2 góc tương ứng)

Mà Góc AHM=90o(AH là đường cao ΔABC)

Nên Góc MBN=90o

Vậy NB vuông góc với BC

b) Ta có: ΔAMH = ΔNMB(cmt)

Nên AH=NB          

Vì AH là đường cao ΔABC cân tại A

Nên AH<AB         

Vì AH<AB(cmt)

Mà AH=NB

Nên NB<AB

c) và d) bạn đợi tí nhé

 

 

19 tháng 8 2016

bạn làm hộ mk yk d dc k

 

23 tháng 4 2018

A B C M D E K F I

a) Gọi tia phân giác của ∠BAC cắt DE tại K

Vì AK ⊥ DE ( gt )

=> △ ADK vuông tại K và △ AEK vuông tại K

Xét tam giác vuông ADK và tam giác vuông AEK có:

AK chung

∠ A1 = ∠ A2 ( AK là tia phân giác của ∠ BAC )

=> △ ADK = △ AEK (g.c.g )

=> AD = AE ( 2 cạnh tương ứng )

=> △ ADE cân tại A

Vì BF // AC ( gt )

=> ∠ BFD = ∠AEF ( 2 góc đồng vị ) ( 1 )

Ta có ∠ D = ∠AEF ( △ ADE cân tại A ) ( 2 )

Từ (1) và (2) => ∠ BFD = ∠D

=> △ BDF cân tại B

b) Vì BF // AC ( gt )

=> ∠ MBF = ∠ ECM ( 2 góc so le trong )

Xét tam giác BMF và tam giác EMC có:

∠MBF = ∠ECM ( cmt )

MB = MC ( M là t/ đ BC )

∠ BMF = ∠ EMC ( 2 góc đối đỉnh )

=> △ BMF = △ EMC ( g.c.g )

=> MF = ME ( 2 cạnh tương ứng )

Mà M nằm giữa 2 điểm F và E

=> M là t/đ của EF.

c) Trên tia CA lấy I sao cho IE = IC

Mà CE = BD ( △ BMF = △ EMC )

=> CE = EI = BD

=> IC = EI = BD + BD = 2BD

AC - AI = IC = 2BD

AB = AD - BD

AI = AE - IC

Mà AD = AE ( △ ADE cân tại A )

Và BD = IE ( cmt )

=> AB = AI

Mà AC - AI = AB

=> AC - AB = 2BD.

Chúc bn học tốt nha ! ❤❤

6 tháng 5 2016

 ai rảnh toán thì giúp mình nha . Đây là đề của Sở GDĐT tỉnh Nam Định thi toán 7 cuối năm