Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chu vi của một hình chữ nhật là 34 cm. Nếu chiều dài của nó đang gia tăng 5 cm và chiều rộng của nó được tăng 3 cm sau đó khu vực này đang tăng lên 80. Tìm diện tích ban đầu của hình chữ nhật.
Trả lời: Diện tích ban đầu của hình chữ nhật là ........ cm2
Chu vi của một hình chữ nhật là 34 cm. Nếu chiều dài của nó đang gia tăng 5 cm và chiều rộng của nó được tăng 3 cm sau đó khu vực này đang tăng lên 80. Tìm diện tích ban đầu của hình chữ nhật.
Trả lời: Diện tích ban đầu của hình chữ nhật là ........ cm2
We have \(S_{ABCD}=AB.BC=\frac{2}{3}BC.BC=\frac{2}{3}BC^2\)
So \(\frac{2}{3}BC^2=24\Rightarrow BC^2=36\Rightarrow BC=6\Rightarrow AB=4\) (cm)
\(\Rightarrow\) The perimeter of ABCD is \(2.\left(4+6\right)=20\left(cm\right)\)
Pythagorean theorem: \(AD=\sqrt{BD^2-AB^2}=4\) (cm)
\(\Rightarrow BC=AD=4\left(cm\right)\)
\(CC'=\sqrt{BC'^2-BC^2}=4\sqrt{2}\)
The lateral surface area: \(2CC'.\left(BC+AB\right)=56\sqrt{2}\left(cm^2\right)\)
đựng đường cao 2 bên áp dụng 2 tam giác đồng dạng suy ra tỉ số diện tích
đáp án 22 cm2
Let x and y be the length of 2 diagonals of the rhombus , so the rhombus's area equal : \(\frac{xy}{2}=\frac{\frac{2}{5}y.y}{2}=\frac{1}{5}y^2=60\)(cm2)
=> y = \(\sqrt{60:\frac{1}{5}}=\sqrt{300}\)(cm) ; x = \(\frac{2}{5}\sqrt{300}=\sqrt{48}\)(cm2) .2 half-diagonals are perpendicular , so the length of 1 side of the rhombus is found by using Pythagorean Theorem :
\(\sqrt{\left(\frac{x}{2}\right)^2+\left(\frac{y}{2}\right)^2}=\sqrt{\frac{\left(\sqrt{48}\right)^2}{4}+\frac{\left(\sqrt{300}\right)^2}{4}}=\sqrt{\frac{48+300}{4}}\)= \(\frac{\sqrt{348}}{2}=\frac{\sqrt{m}}{4}\)(cm)
=> m = \(\left(\frac{\sqrt{348}}{2}.4\right)^2=\frac{348}{4}.16=1392\)