Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: P= \(x^2y^2\left(x^2+y^2\right)\) = \(xy.\left[xy.\left(x^2+y^2\right)\right]\)= \(\dfrac{1}{2}xy.\left[2xy.\left(x^2+y^2\right)\right]\)
Áp dụng BĐT Co-si cho biểu thức trong ngoặc vuông và xy ta được:
\(2xy\left(x^2+y^2\right)\) \(\leq\) \(\dfrac{\left(x^2+2xy+y^2\right)^2}{4}=\dfrac{\left[\left(x+y\right)^2\right]^2}{4}=\dfrac{\left(x+y\right)^4}{4}=\dfrac{2^4}{4}=4\) (1)
xy \(\leq\) \(\dfrac{\left(x+y\right)^2}{4}=\dfrac{2^2}{4}=1\) (2)
Từ (1);(2) \(\Rightarrow\) \(\dfrac{1}{2}xy.\left[2xy.\left(x^2+y^2\right)\right]\) \(\leq\) \(\dfrac{1}{2}.1.4=2\)
\(\Rightarrow\) P \(\leq\) 2
Dấu"=" xảy ra khi x=y=1
Vậy MinP = 2 khi x=y=1
\(\leq\)\(\leq\)
Bài 1:
Kẻ \(OM\perp AB\), \(OM\)cắt \(CD\)tại \(N\).
Khi đó \(MN=8cm\).
TH1: \(AB,CD\)nằm cùng phía đối với \(O\).
\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (1)
\(R^2=OA^2=OM^2+AM^2=\left(h+8\right)^2+\left(\frac{15}{2}\right)^2\)(2)
Từ (1) và (2) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{9}{4}\).
TH2: \(AB,CD\)nằm khác phía với \(O\).
\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (3)
\(R^2=OA^2=OM^2+AM^2=\left(8-h\right)^2+\left(\frac{15}{2}\right)^2\)(4)
Từ (3) và (4) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{-9}{4}\)(loại).
Bài 3:
Lấy \(A'\)đối xứng với \(A\)qua \(Ox\), khi đó \(A'\)có tọa độ là \(\left(1,-2\right)\).
\(MA+MB=MA'+MB\ge A'B\)
Dấu \(=\)xảy ra khi \(M\)là giao điểm của \(A'B\)với trục \(Ox\).
Suy ra \(M\left(\frac{5}{3},0\right)\).
Ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
= \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot\frac{a^2bc+abc^2+ab^2c}{a^2b^2c^2}\)(1)
Mà a+c+b=0(2)
Từ (1)(2)=>\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\) = \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot\frac{abc\left(a+b+c\right)}{a^2b^2c^2}\)= \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
=> \(\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)(đpcm)
Ta có : \(đt\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\) ( do cả hai vế đều dương )
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{a+b+c}{abc}\right)\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\) ( đúng đo \(a+b+c=0\) )
Bạn đúng là 1 người tốt bụng , quan tâm tới bạn bè , chắc chắn mọi điều tốt sẽ đến vs bạn
Mặc dù mk ko bt bạn Hạ Thì là aiNNhưng mk chúc mừng sinh nhật bạn ấy
Xét tam giác ABC vuông tại A:
a)\(AB^2\)+\(AC^2\)=\(BC^2\)(Pytago)
=>BC= \(\sqrt{AB^2+AC^2}\)=\(\sqrt{3^2+4^2}\)=5 (cm)
tanB= \(\frac{AC}{AB}\)=\(\frac{4}{3}\)\(\approx\)53 độ => Góc B \(\approx\)53 độ
Góc B+Góc C+ Góc A=180 độ
=>Góc C= 180-90-53=36 độ
Vậy AB=3cm, AC =4cm, BC=5cm, Góc A =90 độ, góc B bằng 53 độ, góc C =36 độ
a/ \(BC=\sqrt{AB^2+AC^2}=\sqrt{9+16}=5\)
b/ \(\cos\widehat{B}=\frac{AB}{BC}\Rightarrow BC=\frac{AB}{\cos\widehat{B}}=\frac{3}{\cos40^o}\)
\(\cot\widehat{B}=\frac{AB}{AC}\Rightarrow AC=\frac{AB}{\cot\widehat{B}}=\frac{3}{\cot40^o}\)
c/ \(AC=\sqrt{BC^2-AB^2}=\sqrt{400-144}=16\)
d/ \(\cos\widehat{C}=\frac{AC}{BC}\Rightarrow AC=BC.\cos\widehat{C}=12.\cos70^o\)
\(\sin\widehat{C}=\frac{AB}{BC}\Rightarrow AB=BC.\sin\widehat{C}=12.\sin70^o\)
Pitago cho tam giác vuông ABM vuông tại M:
\(BM=\sqrt{AB^2-AM^2}=3\)
Hệ thức lượng tam giác vuông ABC:
\(AB^2=BM.BC\Rightarrow BC=\dfrac{AB^2}{BM}=\dfrac{25}{3}\)
\(\Rightarrow CM=BC-BM=\dfrac{16}{3}\)
\(AC=\sqrt{BC^2-AB^2}=\dfrac{20}{3}\)