Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=(1/4.9+1/9.14+...+1/44.49).1-3-5-...-49/89
B=1/5(1/4-1/9+1/9-1/14+...+1/44-1/49).1-(3+5+...+49)/89
B=1/5(1/4-1/49).1-24.52:2/89
B=9/196.-7
B=-9/28
Ta có \(\frac{1-3-5-..-49}{89}=\frac{1-\left(3+5+7+...+49\right)}{89}\)
\(=\frac{1-\left[\left(49-3\right):2+1\right].\left(\frac{49+3}{2}\right)}{89}=\frac{1-624}{89}=-7\)
Lại có \(\frac{1}{4.9}+\frac{1}{9.14}+....+\frac{1}{44.49}=\frac{1}{5}\left(\frac{5}{4.9}+\frac{5}{9.14}+...+\frac{5}{44.49}\right)\)
\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{44}-\frac{1}{49}\right)=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{49}\right)=\frac{1}{5}.\frac{45}{196}=\frac{9}{196}\)
Khi đó \(B=\frac{9}{196}.\left(-7\right)=-\frac{9}{28}\)
\(\frac{3x+25}{144}=\frac{2y-169}{25}=\frac{z+144}{169}=\frac{3x+2y+z}{338}=\frac{169}{338}=\frac{1}{2}\)
\(\Rightarrow3x+25=\frac{1}{2}.144=72\)
\(x=\frac{47}{3}\)
\(2y-169=\frac{1}{2}.25=\frac{25}{2}\)
\(y=\frac{363}{4}\)
Bài 3 :
A B S M C P N x y 1 2 z 1 2
a) Kéo dài tia NM và NM cắt BC tại S
Khi đó ta có :
\(\hept{\begin{cases}\widehat{ABC}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\\\widehat{MNP}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\end{cases}}\Rightarrow\widehat{ABC}=\widehat{MNP}\Rightarrow\widehat{MNP}=40^o\)
b) Vẽ \(\hept{\begin{cases}\text{Bx là tia phân giác của }\widehat{ABC}\\\text{Ny là tia phân giác của }\widehat{MNP}\end{cases}}\)
\(\Rightarrow\widehat{B_1}=B_2=\widehat{N_1}=\widehat{N_2}=\frac{\widehat{ABC}}{2}=\frac{\widehat{MNP}}{2}=\frac{40^o}{2}=20^o\left(\text{do }\widehat{ABC}=\widehat{MNP}\right)\)
Vẽ Sz // Bx => \(\widehat{B_2}=\widehat{S_1}\)
Lại có \(\widehat{BSN}=\widehat{MSP}\Rightarrow\frac{\widehat{BSN}}{2}=\frac{\widehat{MSP}}{2}\Rightarrow\widehat{S_2}=\widehat{N_1}\)mà \(\widehat{S_2}\text{ và }\widehat{N_1}\)là 2 góc so le trong
=> Sz // Ny mà Sz // Bx => Bx // Ny hay tia phân giác của 2 góc \(\widehat{ABC}\text{ và }\widehat{MNP}\)song song nhau
\(\Delta ABC\)có \(\widehat{B}=\widehat{C}\)=> \(\Delta ABC\)cân tại A
=> phân giác AD đồng thời là đường cao trong \(\Delta ABC\)=> AD vuông góc BC
lại có BC//Ay => AD vuông góc Ay
Vì góc B = góc C ---> tam giác ABC là tam giác cân
---> tia phân giác AD đồng thời cũng là đường cao
---> AD VUÔNG GÓC BC
Lại có Ay // BC
---> AD // Ay
học tốt
Giải:
Đặt \(\dfrac{a}{c}=\dfrac{c}{b}=k\)
\(k^2=\dfrac{a}{c}.\dfrac{c}{b}=\dfrac{a}{b}\) (1)
\(k^2=\dfrac{a^2}{c^2}=\dfrac{c^2}{b^2}=\dfrac{a^2+c^2}{b^2+c^2}\) ( t/c dãy tỉ số bằng nhau )
Từ (1), (2) \(\Rightarrow\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\left(đpcm\right)\)
Ta có \(\dfrac{a}{c}\)= \(\dfrac{c}{b}\) => \(\dfrac{a^2}{c^2}\) = \(\dfrac{c^2}{b^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{a^2}{c^2}\) = \(\dfrac{c^2}{b^2}\) = \(\dfrac{a^2+c^2}{b^2+c^2}\) (1)
Ta có \(\dfrac{a^2}{c^2}\) = \(\dfrac{a.a}{c.c}\) = \(\dfrac{a.c}{c.b}\)=\(\dfrac{a}{b}\) (vì \(\dfrac{a}{c}\)=\(\dfrac{c}{b}\)) (2)
Từ (1)(2) => \(\dfrac{a^2+c^2}{b^2+c^2}\) = \(\dfrac{a}{b}\) (đpcm)
C= 0
chi tiết : 8 = 2^3 suy ra 8^13 = 2^39
9 = 3^2 suy ra 9^15 = 3^30
bạn thay vào triệt tiêu là ra -2/3 + 2/3 = 0
TL
Đáp án C
HT
K cho mk nha
TL:
c.
^HT^