Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+2}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+2}{4}=\frac{3\left(x+1\right)-2\left(y+2\right)+\left(z+2\right)}{3.2-2.3+4}\)
\(=\frac{3x-2y+z+1}{4}=\frac{106}{4}=26,5\)
\(\Leftrightarrow\hept{\begin{cases}x+1=26,5.2=53\\y+2=26,5.3=79,5\\z+2=26,5.4=106\end{cases}}\Leftrightarrow\hept{\begin{cases}x=52\\y=77,5\\z=104\end{cases}}\)
\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{d+a+b}=\frac{d}{a+b+c}\)
\(\Leftrightarrow\frac{a}{b+c+d}+1=\frac{b}{c+d+a}+1=\frac{c}{d+a+b}+1=\frac{d}{a+b+c}+1\)
\(\Leftrightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{c+d+a}=\frac{a+b+c+d}{d+a+b}=\frac{a+b+c+d}{a+b+c}\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c+d=0\\b+c+d=c+d+a=d+a+b=a+b+c\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c+d=0\\a=b=c=d\end{cases}}\)
Với \(a+b+c+d=0\):
\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
\(=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(d+a\right)}{d+a}+\frac{-\left(a+b\right)}{a+b}+\frac{-\left(b+c\right)}{b+c}\)
\(=-1-1-1-1=-4\)
Nếu \(a=b=c=d\):
\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)
b: |2x-1|<5
=>2x-1>-5 và 2x-1<5
=>2x>-4 và 2x<6
=>-2<x<3
mà x là số nguyên dương
nên \(x\in\left\{1;2\right\}\)
1: Xét ΔAEB và ΔCED có
EA=EC
EB=ED
AB=CD
=>ΔAEB=ΔCED
2: ΔAEB=ΔCED
=>góc BAE=góc DCE
=>góc BAE=góc CAE
=>AE là phân giác của góc BAC