Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\left(-5a^2b^4c^6\right)^7-\left(9a^3bc^5\right)^8=0\)
\(\left(-5\right)^7a^{14}b^{28}c^{42}-9^8a^{24}b^8c^{40}=0\)
Vì \(a^{14}b^{28}c^{42}\ge0\Rightarrow\left(-5\right)^7a^{14}b^{28}c^{42}\le0\)
\(a^{24}b^8c^{40}\ge0\Rightarrow9^8a^{24}b^8c^{40}\ge0\)
\(\Rightarrow\left(-5\right)^7a^{14}b^{28}c^{42}-9^8a^{24}b^8c^{40}\le0\)
Mà VP=0
Dấu "=" xảy ra khi
\(\left(-5\right)^7a^{14}b^{28}c^{42}=0\) và \(9^8a^{24}b^8c^{40}=0\)
\(\Rightarrow a=b=c=0\)
\(\Rightarrow A=a+b+c=0+0+0=0\)
\(B=\left|x+1\right|+\left|x-4\right|+\left|2x-5\right|\ge\left|2x-3\right|+\left|2x-5\right|=\left|2x-3\right|+\left|5-2x\right|\)
\(\ge\left|2x-3+5-2x\right|=\left|2\right|=2\)
Dấu ''='' xảy ra khi \(\left(x+1\right)\left(4-x\right)\ge0;\left(2x-3\right)\left(5-2x\right)\ge0\)
\(-1\le x\le4;\frac{3}{2}\le x\le\frac{5}{2}\Rightarrow-1\le x\le4\)
Vậy GTNN của B bằng 2 tại -1 =< x =< 4
\(x=\frac{5}{3}-\frac{14}{3}:\frac{5}{2}\)
\(\Rightarrow x=\frac{5}{3}-\frac{14}{3}.\frac{2}{5}\)
\(\Rightarrow x=\frac{25}{15}-\frac{28}{15}=\frac{-3}{15}\)
\(\Rightarrow\left|x\right|=\left|\frac{-3}{15}\right|=\frac{3}{15}\)
ta có : \(\left(x-2\right)\left(5-x\right)\le\left(\frac{x-2+5-x}{2}\right)^2=\frac{9}{4}\)
mà vế trái \(\left|y-1\right|+1\ge1\Rightarrow\orbr{\begin{cases}\left(x-2\right)\left(5-x\right)=2\\\left(x-2\right)\left(5-x\right)=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2-7x+12=0\\x^2-7x+11=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
khi đó \(\left|y-1\right|+1=2\Leftrightarrow\left|y-1\right|=1\Leftrightarrow\orbr{\begin{cases}y-1=1\\y-1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=2\\y=0\end{cases}}\)
Vậy ta có x bằng 3 hoặc 4 và y bằng 0 hoặc 2
các câu khác hoàn toàn tương tự nhé
cho mình hỏi là ở chỗ ta có thì \(\frac{9}{4}\)là ở đâu ak
\(\left(x-3\right).\left(x-2015\right)< 0\)
\(\Rightarrow\left(x-3\right)và\left(x-2015\right)\) phải khác dấu
\(\Rightarrow\left(x-3\right)< \left(x-2015\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x-3>0\\x-2015< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>3\\x< 2015\end{matrix}\right.\)
\(\Rightarrow3< x< 2015\)
\(\Rightarrow x\in\left\{4;5;6;7;8;...;2013;2014\right\}\)
( ko bt đúng hay sai nx )
thám tử
\(\left(x-3\right)\left(x-2015\right)< 0\)
Với mọi \(x\in R\) thì:
\(x-2015< x-3\)
Khi đó: \(\left\{{}\begin{matrix}x-2015< 0\\x-3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2015\\x>3\end{matrix}\right.\)
Nên \(3< x< 2015\)
Ta có :
\(A=\dfrac{3x+5}{2+x}\\ \Rightarrow A=\dfrac{3\left(2+x\right)-1}{2+x}=3-\dfrac{1}{2+x}\)
Để A đạt giá trị nguyên thì : \(1⋮\left(2+x\right)\)
\(\Rightarrow\left(2+x\right)\inƯ\left(1\right)=\left\{-1;1\right\}\\ \Rightarrow x\in\left\{-3;-1\right\}\)
Vậy \(S=\left\{-3;-1\right\}\)
Từ chỗ \(\dfrac{3x+5}{2+x}\)ra chỗ \(\dfrac{3\left(2x+1\right)-1}{2+x}\)là sao mình ko hiểu??
Ta có:
\(4x^3-3=29\)
\(\Leftrightarrow4x^3=32\)
\(\Leftrightarrow x^3=8\)
\(\Leftrightarrow x^3=2^3\)
\(\Leftrightarrow x=2\)
\(\Leftrightarrow\dfrac{x+16}{9}=\dfrac{2+16}{9}=\dfrac{18}{9}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{y-25}{-16}=2\\\dfrac{z+49}{25}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y-25=-16.2=-32\\z+49=25.2=50\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-7\\z=1\end{matrix}\right.\)
\(\Leftrightarrow x+2y+3z=2+\left(-14\right)+3=-9\)
Vậy \(x+2y+3z=-9\)
Giải thích các bước giải:
Gọi vận tốc của xe thứ hai là: a (km/h; a > 0)
vận tốc của xe thứ nhất là: 60%a = 35a35a
Gọi thời gian xe thứ nhất đi hết quãng đường AB là: b (h; b > 0)
thời gian xe thứ 2 đi hết quãng đường AB là: b - 3
Vì quãng đường đi như nhau nên thời gian và vận tốc là 2 đại lượng tỉ lệ nghịch ⇒a35a=bb−3=53⇒a35a=bb−3=53
⇒b5=b−33=b−(b−3)5−3=32⇒b5=b−33=b−(b−3)5−3=32 (theo tính chất của dãy tỉ số = nhau)
⇒b=32.5=152=7,5;b−3=7,5−3=4,5⇒b=32.5=152=7,5;b−3=7,5−3=4,5
Vậy thời gian xe thứ nhất đi hết quãng đường AB là 7,5 giờ, thời gian xe thứ 2 đi là 4,5 giờ