K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2021

Bài 6:

Gọi số giấy vụn 3 lớp thu được lần lượt là: \(a,b,c\left(a,b,c>0\right)\)

Áp dụng TCDTSBN:

\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c}{3+5+7}=\dfrac{150}{15}=10\)

\(\Rightarrow\left\{{}\begin{matrix}a=3\cdot10=30\left(kg\right)\\b=5\cdot10=50\left(kg\right)\\c=7\cdot10=70\left(kg\right)\end{matrix}\right.\)

13 tháng 11 2021

Bài 4: 

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{-21}{7}=-3\)

Do đó: x=-6; y=-15

7 tháng 9 2021

Ai đó giúp mk với.Mk đội ơn nhiều lắm

7 tháng 9 2021

Đây nhé bạn

6 tháng 9 2021

Ta có : a song song với b 

=> Góc A = Góc B = 90độ

Hay x = 90 độ

=> Góc D + Góc C = 180độ ( 2 góc trong cùng phía )

=> y + 130 độ = 180 độ

=> y = 50 độ

6 tháng 9 2021

Vẽ Cx song song với Am(1), ta được :

=> Góc mAC + Góc ACx = 180 độ

=> Góc mAC + Góc BCA + Góc BCx = 180 độ 

Hay Góc BCx = 180 độ - 45 độ - 60 độ = 75 độ 

Vì Góc nBC + Góc BCx =  180 độ ( 75 độ + 105 độ = 180 độ )

Mà Góc nBC và Góc BCx là 2 góc trong cùng phía 

Nên ta được Bn song song với Cx  (2)

Từ (1) và (2) => Bn song song với Am

7 tháng 9 2021

Bài 4

a/ \(x=\widehat{ABC};y=\widehat{ADC}\)

Ta có a//b; \(a\perp c\Rightarrow b\perp c\Rightarrow x=\widehat{ABC}=90^o\)

Xét tứ giác ABCD

\(y=\widehat{ADC}=360^o-\widehat{BAD}-\widehat{ABC}-\widehat{BCD}\) (tổng các góc trong của tứ giác = 360 độ)

\(\Rightarrow y=\widehat{ADC}=360^o-90^o-90^o-130^o=50^o\)

b/ Kéo dài n về phí B cắt AC tại D

\(\Rightarrow\widehat{CBD}=180^o-\widehat{nBC}=180^o-105^o=75^o\)

Xét tg BCD có

\(\widehat{BDC}=180^o-\widehat{CBD}-\widehat{BCD}=180^o-75^o-60^o=45^o=\widehat{mAC}\)

=> Am//Bn (Hai đường thẳng bị cắt bởi đường thẳng thứ 3 tạo thành hai góc đồng vị bằng nhau thì chúng // với nhau)

Bài 5

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3a}=\frac{a+b+c}{3\left(a+b+c\right)}=\frac{1}{3}\)

Ta có \(\frac{a}{3b}=\frac{b}{3c}=\frac{a+b}{3\left(b+c\right)}=\frac{1}{3}\Rightarrow\frac{a+b}{b+c}=1\Rightarrow a+b=b+c\)

\(\frac{b}{3c}=\frac{c}{3a}=\frac{b+c}{3\left(c+a\right)}=\frac{1}{3}\Rightarrow\frac{b+c}{c+a}=1\Rightarrow b+c=c+a\)

\(\Rightarrow a+b=b+c=c+a\)

\(\frac{c}{3a}=\frac{a}{3b}=\frac{c+a}{3\left(a+b\right)}=\frac{1}{3}\Rightarrow\frac{c+a}{a+b}=1\)

Từ \(\frac{a+b}{b+c}=\frac{a}{b+c}+\frac{b}{b+c}=\frac{a}{b+c}+\frac{b}{c+a}=1\) (1)

Từ \(\frac{b+c}{c+a}=\frac{b}{c+a}+\frac{c}{c+a}=\frac{b}{c+a}+\frac{c}{a+b}=1\) (2)

Từ \(\frac{c+a}{a+b}=\frac{c}{a+b}+\frac{a}{a+b}=\frac{c}{a+b}+\frac{a}{b+c}=1\) (3)

Công 2 vế của (1) (2) và (3)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{c}{a+b}+\frac{a}{b+c}=3\)

\(\Rightarrow2\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=3.\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{3}{2}\)

\(\Rightarrow M=2018\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=\frac{2018.3}{2}=3027\)

24 tháng 8 2021

B=(1/4.9+1/9.14+...+1/44.49).1-3-5-...-49/89

B=1/5(1/4-1/9+1/9-1/14+...+1/44-1/49).1-(3+5+...+49)/89

B=1/5(1/4-1/49).1-24.52:2/89

B=9/196.-7

B=-9/28

24 tháng 8 2021

Ta có \(\frac{1-3-5-..-49}{89}=\frac{1-\left(3+5+7+...+49\right)}{89}\)

\(=\frac{1-\left[\left(49-3\right):2+1\right].\left(\frac{49+3}{2}\right)}{89}=\frac{1-624}{89}=-7\)

Lại có \(\frac{1}{4.9}+\frac{1}{9.14}+....+\frac{1}{44.49}=\frac{1}{5}\left(\frac{5}{4.9}+\frac{5}{9.14}+...+\frac{5}{44.49}\right)\)

\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{44}-\frac{1}{49}\right)=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{49}\right)=\frac{1}{5}.\frac{45}{196}=\frac{9}{196}\)

Khi đó \(B=\frac{9}{196}.\left(-7\right)=-\frac{9}{28}\)

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

BD=CE
\(\widehat{ABD}=\widehat{ACE}\)

Do đó: ΔABD=ΔACE

Suy ra: AB=AC

hay ΔABC cân tại A

b: XétΔABC có 

AD là đường cao

CH là đường cao

AD cắt CH tại D

Do đó: D là trực tâm của ΔABC

=>BD vuông góc với AC

21 tháng 10 2021

=30 độ nha

DD
28 tháng 10 2021

\(3^{x+1}+3^{x+3}=810\)

\(\Leftrightarrow3^{x+1}+3^{x+1}.3^2=810\)

\(\Leftrightarrow3^{x+1}.10=810\)

\(\Leftrightarrow3^{x+1}=81=3^4\)

\(\Leftrightarrow x+1=4\)

\(\Leftrightarrow x=3\)

13 tháng 10 2021

Bài 1 :

a ) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{12}=\frac{y}{-8}=\frac{x+y}{12+\left(-8\right)}=\frac{-48}{4}=-12.\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{12}=-12\\\frac{y}{-8}=-12\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-144\\y=96\end{cases}}\)

b ) Từ \(x\):\(\left(-7\right)\)\(y\)\(10\)

\(\Rightarrow\)\(\frac{x}{-7}=\frac{y}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{-7}=\frac{y}{10}=\frac{y-x}{10-\left(-7\right)}=\frac{-34}{17}=-2\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{-7}=-2\\\frac{y}{10}=-2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=14\\y=-20\end{cases}}\)

c ) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{15}=\frac{y}{-12}=\frac{2x}{30}=\frac{y}{-12}=\frac{2x+y}{30+\left(-12\right)}=\frac{-360}{18}=-20\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=-20\\\frac{y}{-12}=-20\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-300\\y=240\end{cases}}\)

d ) Từ \(2x=-3y\)\(\Rightarrow\)\(\frac{x}{-3}=\frac{y}{2}\)

Áp dugj tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{-3}=\frac{y}{2}=\frac{x}{-3}=\frac{5y}{10}=\frac{x-5y}{-3-10}=\frac{-130}{-13}=10\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{-3}=10\\\frac{y}{2}=10\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-30\\y=20\end{cases}}\)

13 tháng 10 2021

Bài 2 :

a ) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}=\frac{x+y-z}{2+\left(-3\right)-5}=\frac{-54}{-6}=9.\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=9\\\frac{y}{-3}=9\\\frac{z}{5}=9\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=18\\y=-27\\z=45\end{cases}}\)

b ) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{4}=\frac{y}{-7}=\frac{z}{3}=\frac{x}{4}=\frac{2y}{-14}=\frac{z}{3}=\frac{x+2y-z}{4+\left(-14\right)-3}=\frac{-39}{-13}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=3\\\frac{y}{-7}=3\\\frac{z}{3}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=12\\y=-21\\z=9\end{cases}}\)