...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
21 tháng 9 2021

Lời giải:
Hình 1:

Ta thấy $\widehat{xAB}=\widehat{ABy}=120^0$, mà 2 góc này ở vị trí so le trong nên $Ax\parallel By(1)$

Lại có:
$\widehat{ABy}+\widehat{yBC}+\widehat{ABC}=360^0$

$120^0+\widehat{yBC}+80^0=360^0$

$\widehat{yBC}=160^0$

Vậy: $\widehat{yBC}=\widehat{BCz}=160^0$. Mà hai góc này ở vị trí so le trong nên $By\parallel Cz(2)$

Từ $(1);(2)\Rightarrow Ax\parallel By\parallel Cz$

----------------------

Hình 2:

$\widehat{xAB}+\widehat{ABy}=65^0+115^0=180^0$, mà 2 góc này ở vị trí trong cùng phía nên $Ax\parallel By(1)$

$\widehat{CBy}+\widehat{BCz}=130^0+50^0=180^0$, mà 2 góc này ở vị trí trong cùng phía nên $By\parallel Cz(2)$

Từ $(1);(2)\Rightarrow Ax\parallel By\parallel Cz$

NM
8 tháng 8 2021

a. ta có :\(\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x^2}{25}=\frac{y^2}{16}=\frac{x^2-y^2}{25-16}=\frac{9}{9}=1\Rightarrow x^2=25\)

\(\orbr{\begin{cases}x=5\Rightarrow y=4\\x=-5\Rightarrow y=-4\end{cases}}\)

2.\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x^3}{27}=\frac{y^3}{64}=\frac{z^3}{125}=\frac{x^3+y^3-z^3}{27+64-125}=\frac{26}{17}\)

Vậy \(x=3\sqrt[3]{\frac{26}{17}},y=4\sqrt[3]{\frac{26}{17}},z=5\sqrt[3]{\frac{26}{17}}\)

3.\(\frac{x}{\frac{1}{8}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{2}}=\frac{x+y-z}{\frac{1}{8}+\frac{1}{3}-\frac{1}{2}}=-\frac{9}{-\frac{1}{24}}=216\) vậy \(\hept{\begin{cases}x=\frac{216}{8}=27\\y=\frac{216}{3}=72\\z=\frac{216}{2}=108\end{cases}}\)

4.\(\frac{x}{3}=\frac{1-y}{4}=\frac{z}{2}=\frac{3x+1-y-z}{3\times3+4-2}=\frac{11}{11}=1\)

Vậy \(x=3,y=-3,z=2\)

8 tháng 8 2021

\(1.\)  \(P=15\frac{1}{4}:\left(-\frac{5}{7}\right)-25\frac{1}{4}:\left(-\frac{5}{7}\right)\)

       \(=\left(15\frac{1}{4}-25\frac{1}{4}\right)\cdot\left(-\frac{7}{5}\right)\)

       \(=\left(-10\right)\cdot\left(-\frac{7}{5}\right)\)

       \(=14\)

vậy P=14

\(2.\)   \(\left(\frac{21}{10}-|x+2|\right):\left(\frac{19}{10}-\frac{7}{5}\right)+\frac{4}{5}=1\)

           \(\Rightarrow\left(\frac{21}{10}-|x+2|\right):\frac{1}{2}+\frac{4}{5}=1\)

           \(\Rightarrow\left(\frac{21}{10}-|x+2|\right)\cdot2+\frac{4}{5}=1\)

          \(\Rightarrow\left(\frac{21}{5}-|x+2|\right)+\frac{4}{5}=1\)

         \(\Rightarrow\frac{21}{5}-|x+2|=\frac{1}{5}\)

         \(\Rightarrow|x+2|=4\)

         \(\Rightarrow\orbr{\begin{cases}x+2=4\\x+2=-4\end{cases}}\)

          \(\Rightarrow\orbr{\begin{cases}x=2\\x=-6\end{cases}}\)

vậy  \(x\in\left\{2;-6\right\}\)

NM
8 tháng 8 2021

bài 1

ta có \(P=\left(15\frac{1}{4}-25\frac{1}{4}\right):\left(-\frac{5}{7}\right)=-10:\left(-\frac{5}{7}\right)=-10\times-\frac{7}{5}=14\)

2.\(\left(\frac{21}{10}-\left|x+2\right|\right):\left(\frac{19}{10}-\frac{14}{10}\right)+\frac{4}{5}=1\)

\(\Leftrightarrow\left(\frac{21}{10}-\left|x+2\right|\right):\frac{5}{10}=\frac{1}{5}\Leftrightarrow\frac{21}{10}-\left|x+2\right|=\frac{2}{5}\)

\(\Leftrightarrow\left|x+2\right|=\frac{21}{10}-\frac{2}{5}=\frac{17}{10}\Leftrightarrow\orbr{\begin{cases}x+2=\frac{17}{10}\\x+2=-\frac{17}{10}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{10}\\x=-\frac{37}{10}\end{cases}}}\)

26 tháng 6 2017

\(xy-x-y+1=0\)

\(\Rightarrow x.\left(y-1\right)-\left(y-1\right)=0\)

\(\Rightarrow\left(y-1\right).\left(x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}y-1=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

Vậy \(x=y=1\)

Chúc bạn học tốt!!!

26 tháng 6 2017

Tìm x,y biết:

xy-x-y+1=0

=> x(y-1)-y=0-1

=> x(y-1)- (y-1)= (-1)

=> (y-1)(x-1)=(-1)

\(\Rightarrow\left[{}\begin{matrix}y-1=1;x-1=-1\\y-1=-1;x-1=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=2;x=0\\y=0;x=2\end{matrix}\right.\)

30 tháng 8 2021

1/ 

Xét tg AOC và tg BOD có

OA=OB; OC=OD

\(\widehat{AOC}=\widehat{BOD}\) (góc đối đỉnh)

\(\Rightarrow\Delta AOC=\Delta BOD\left(c.g.c\right)\)

Ta có OA=OB; OC=OD => ACBD là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường thig tứ giác đó là hbh) => AC//BD (trong hình bình hành các cặp cạnh đối // với nhau từng đôi một)

2/ Xét tg ACD và tg BDC có

DC chung

AC=BD; AD=BC (trong hbh các cặp cạnh đối bằng nhau từng đôi một)

\(\Rightarrow\Delta ACD=\Delta BDC\left(c.c.c\right)\)

3/

Xet tg DAE và tg CBF có

AD=BC (cạnh đối hbh ACBD)

AE=BF (giả thiết)

\(\widehat{DAE}=\widehat{CBF}\) (Hai góc đối của hình bình hành ACBF)

\(\Rightarrow\Delta DAE=\Delta CBF\left(c.g.c\right)\)

4/

Ta có 

CE//DF (cạnh đối của hbh ACBF)

CE=AC-AE; DF=BD-BF

mà AC=BD; AE=BF

=> CE=DF

=> ECFD là hình bình hành (tứ giác có cặp cạnh đối // và bằng nhau là hbh)

=> DE//CF (trong hbh các cặp cạnh đối // với nhau từng đôi một)

Trong hbh ECFD có EF và CD là hai đường chéo

=> EF và CD cắt nhau tại trung điểm mỗi đường (Trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)

Mà O là trung điểm CD => O là trung điểm của EF => E; O; F thẳng hàng

30 tháng 8 2021

1/

Xét tg ABC có AB=AC => tg ABC cân tại A \(\Rightarrow\widehat{B}=\widehat{C}\) (Trong tg cân hai góc ở đáy = nhau)

BH=CH => AH là đường trung tuyến \(\Rightarrow AH\perp BC\) (trong tg cân đường trung tuyến xp từ đỉnh đồng thời là đường cao và đường trung trực)

2/ Ta có

\(MN\perp BC;CP\perp BC\) => MN//CP

MN=CP

=> Tứ giác MNPC là hình bình hành (Tứ giác có cặp cạnh đối // và = nhau thì tứ giác đó là hbh)

=> MN=CP; MC=NP; MP chung \(\Rightarrow\Delta MCP=\Delta PMN\left(c.c.c\right)\)

3/

Trong hình bình hành MNPC thì MP và NC là hai đường chéo hbh 

=> I là trung điểm của NC (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)

30 tháng 8 2021

bạn ơi giúp mình nốt bài 3 này nha mình cảm ơn nhiềuundefined