Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi \(A=1-x^2\)
Ta có: \(x^2\ge0\Rightarrow-x^2\le0\Rightarrow A=1-x^2\le1\)
Dấu " = " khi \(x^2=0\Rightarrow x=0\)
Vậy \(MAX_A=1\) khi x = 0
b) Đặt \(B=-3y^2\)
Ta có: \(3y^2\ge0\Rightarrow-3y^2\le0\)
Dấu " = " khi \(-3y^2=0\Rightarrow y=0\)
Vậy \(MAX_B=0\) khi y = 0
c) Đặt \(C=10-\left(2x-1\right)^2\)
Ta có: \(\left(2x-1\right)^2\ge0\)
\(\Rightarrow-\left(2x-1\right)^2\le0\)
\(\Rightarrow10-\left(2x-1\right)^2\le10\)
Dấu " = " khi \(\left(2x-1\right)^2=0\Rightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)
Vậy \(MAX_C=10\) khi \(x=\frac{1}{2}\)
BT 8.4 :
a,Ta có: \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\) = k
\(\Rightarrow a=bk;c=dk\)
Thay a = bk; c = dk vào VT ta được:
\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\)
Thay a = bk; c = dk vào VP ta được:
\(\dfrac{ab}{cd}=\dfrac{bk\times b}{dk\times d}=\dfrac{b^2}{d^2}\)
\(\Rightarrow\) VT = VP
Vậy \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\)
b,Ta có \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}=k\)
\(\Rightarrow a=bk;c=dk\)
Thay a = bk; c = dk vào VT ta được:
\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{\left[b\times\left(k-1\right)\right]^2}{\left[d\times\left(k-1\right)\right]^2}=\dfrac{b^2}{d^2}\)
Thay a = bk; c = dk vào VP ta được:
\(\dfrac{ab}{cd}=\dfrac{bk\times b}{dk\times d}=\dfrac{b^2}{d^2}\)
Kẻ tia \(Bz//Ax\Rightarrow Bz//Cy\).
Vì \(Bz//Ax\)nên \(\widehat{BAx}+\widehat{ABz}=180^o\)(hai góc trong cùng phía)
\(\Leftrightarrow\widehat{ABz}=180^o-\widehat{BAx}=180^o-110^o=70^o\)
Tương tự xét \(Bz//Cy\)cũng suy ra được \(\widehat{BCz}=180^o-\widehat{BCy}=180^o-120^o=60^o\)
\(\widehat{ABC}=\widehat{ABz}+\widehat{CBz}=70^o+60^o=130^o\)
ta có \(2\left|y+1\right|=6-\left|x-3\right|\)
Do vế trái là số chẵn và không âm nên vế phải cũng là số chẵn không âm
nên : \(\hept{\begin{cases}\left|x-3\right|\text{ chẵn}\\\left|x-3\right|\le6\end{cases}}\Rightarrow\left|x-3\right|=0,2,4,6\)
\(\hept{\begin{cases}\left|x-3\right|=0\\\left|y+1\right|=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\\orbr{\begin{cases}y=2\\y=-4\end{cases}}\end{cases}}}\)TH1\(\hept{\begin{cases}\left|x-3\right|=0\\\left|y+1\right|=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}\text{ hoặc }\hept{\begin{cases}x=3\\y=-4\end{cases}}}}\)
TH2: \(\hept{\begin{cases}\left|x-3\right|=2\\\left|y+1\right|=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}\text{ hoặc }\hept{\begin{cases}x=1\\y=-3\end{cases}}\text{ hoặc }\hept{\begin{cases}x=5\\y=1\end{cases}}\text{ hoặc }\hept{\begin{cases}x=5\\y=-3\end{cases}}}}\)
TH3: \(\hept{\begin{cases}\left|x-3\right|=4\\\left|y+1\right|=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=7\\y=0\end{cases}\text{ hoặc }\hept{\begin{cases}x=7\\y=-2\end{cases}}\text{ hoặc }\hept{\begin{cases}x=-1\\y=0\end{cases}}\text{ hoặc }\hept{\begin{cases}x=-1\\y=-2\end{cases}}}}\)
TH4: \(\hept{\begin{cases}\left|x-3\right|=6\\\left|y+1\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=9\\y=-1\end{cases}\text{ hoặc }\hept{\begin{cases}x=-3\\y=-1\end{cases}}}}\)
Ta thấy rằng 2|y+1| luôn luôn lớn hơn 0
Nên suy ra được là : |x-3|+2(y+1)=6
<=>|x-3|+2y=4
<=>|x-3|=4-2y
Có hai trường hợp
1, x-3=4-2y
<=>x-7-2y=0
<=>x-2y=7
2, 3-x=4-2y
<=>x-2y=-1
Đến đây ta thấy hai kết quả khác hoàn toàn nên ko thảo mãn x và y