Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\dfrac{4x}{4x^2-8x+7}+\dfrac{3x}{4x^2-10x+7}=1\)
Dễ thấy \(x=0\) ko phải là nghiệm của pt
Chia tử và mẫu cho x, ta được:
\(\dfrac{4}{4x-8+\dfrac{7}{x}}+\dfrac{3}{4x-10+\dfrac{7}{x}}=1\) (*)
Đặt \(t=4x+\dfrac{7}{x}-8\) thì:
(*) \(\Rightarrow\dfrac{4}{t}+\dfrac{3}{t-2}=1\)
Quy đồng lên tìm được t, sau đó dễ dàng tìm được x.
bạn chỉ cần bình tĩnh ,khg nên căng thẳng suy ngĩ lại những việc mình làm sai và cố gắng sửa bằng cách làm thật tốt công việc đó
chọn cho mình nhé,mình nói có đúng khg các bạn
bn cần tự tin lên, đừng sa vào các thứ ko tốt cho sức khỏe, tập trung hok tập, phải độc lập lên,tao cho mik những thứ tốt đẹp nhất nhé!!! Cố lên tất cả mọi người đều tin bn
{\__ /}
* *
Đặt \(m=a^2,n=b^2\)
Ta đưa bài toán về dạng tìm GTLN và GTNN của \(A=m-3mn+2n\)
Khi đó ta suy ra từ giả thiết :
\(\left(m+n+1\right)^2+3mn+1=4m+5n\)
\(\Rightarrow m-3mn+2n=\left(m+n+1\right)^2+1-3m-3n\)
\(=\left(m^2+n^2+2mn+2m+2n+1\right)+1-3n-3m\)
\(=m^2+n^2+2mn-m-n+2\)
\(=m^2+m\left(2n-1\right)+n^2-n+2\)
\(=m^2+m\left(2n-1\right)+\frac{\left(2n-1\right)^2}{4}+\frac{7}{4}\)
\(=\left(m+\frac{2n-1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
Hay \(A\ge\frac{7}{4}\) . Đẳng thức xảy ra khi \(m=\frac{1-2n}{2}\)
Tới đây bạn tự suy ra nhé ^^
B1:
a, \(\dfrac{3x+7}{2+x-x^2}\ge5\)
<=> \(\dfrac{3x+7-5\left(2+x-x^2\right)}{2+x-x^2}\ge0\)
<=> \(\dfrac{5x^2+8x-3}{2+x-x^2}\ge0\)
\(5x^2+2x-3=0< =>\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=-1\end{matrix}\right.\)
\(-x^2+x+2=0< =>\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
- Sau đó lập bảng xét dấu và kết luận
B2:
Vì \(\dfrac{\Pi}{2}< x< \Pi\) => \(\cos\alpha< 0\), \(\sin\alpha>0\)
\(\cos2\alpha=1-2\sin^2\alpha=1-2.\left(\dfrac{4}{5}\right)^2=\dfrac{-7}{25}\)\(\cos\alpha=-\sqrt{1-\sin^2\alpha}=-\sqrt{1-\left(\dfrac{4}{5}\right)^2}=\dfrac{-3}{5}\)\(\sin2\alpha=2\sin\alpha.\cos\alpha=2.\dfrac{4}{5}.\left(\dfrac{-3}{5}\right)=\dfrac{-24}{25}\)
11 c)
\(a^2+2\ge2\sqrt{a^2+1}\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) (luôn đúng)
12 a) Có a+b+c=1\(\Rightarrow\) (1-a)(1-b)(1-c)= (b+c)(a+c)(a+b) (*)
áp dụng BĐT cô-si: \(\left(b+c\right)\left(a+c\right)\left(a+b\right)\ge2\sqrt{bc}2\sqrt{ac}2\sqrt{ab}=8\sqrt{\left(abc\right)2}=8abc\) ( luôn đúng với mọi a,b,c ko âm )
b) áp dụng BĐT cô-si: \(c\left(a+b\right)\le\dfrac{\left(a+b+c\right)^2}{4}=\dfrac{1}{4}\)
Tương tự: \(a\left(b+c\right)\le\dfrac{1}{4};b\left(c+a\right)\le\dfrac{1}{4}\)
\(\Rightarrow abc\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{1}{4}\dfrac{1}{4}\dfrac{1}{4}=\dfrac{1}{64}\)