Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ps : Bn tự vẽ hình nhé, mk chỉ giải thôi ạ.
a) Xét \(\Delta ABC\)và \(\Delta HAB\)
\(\widehat{BAC}=\widehat{BHA}=90^O\)
\(\widehat{ABC}chung\)
\(\Rightarrow\Delta ABC~\Delta HBA\)( g - g )
b) Xét \(\Delta AHD\)và \(\Delta CED\)
\(\widehat{AHD}=\widehat{CED}=90^O\)
\(\widehat{ADH}=\widehat{CDE}\)( đối đỉnh )
\(\Rightarrow\Delta AHD~\Delta CED\left(g-g\right)\)
\(\Rightarrow\frac{AH}{AD}=\frac{CE}{CD}\Rightarrow AH.CD=AD.CE\)
c) Vì H là trung điểm của BD mà \(AH\perp BD\)
=> AH là đường trung trực của BD
\(\Rightarrow AB=AD\)
Mà : \(\frac{AH}{AD}=\frac{CE}{CD}\)
\(\Rightarrow\frac{AH}{AB}=\frac{CE}{CD}\)
Vì \(\Delta ABC~\Delta HBA\Rightarrow\frac{AH}{AB}=\frac{CA}{CB}\)
Do đó : \(\frac{CE}{CD}=\frac{CA}{CB}=\frac{8}{10}=\frac{4}{5}\)
Vì \(\Delta CED\)vuông
\(\Rightarrow S_{CED}=\frac{CE.ED}{2}\)
\(AB//FK\Rightarrow\widehat{BAH}=\widehat{KFH}\)
\(\widehat{AHB}=\widehat{FHK}=90^O\)
\(BA=HD\)
\(\Rightarrow\Delta AHB=\Delta FHK\)
\(\Rightarrow HA=HF\)mà \(CH\perp AF\)
=> CH là đường trung trực AF \(\Rightarrow\Delta ACF\)cân tại C
Do đó : D là trọng tâm \(\Delta ACF\)
\(\Rightarrow CD=\frac{2}{3}CH\)
Mà \(\cos ACB=\frac{AC}{BC}=\frac{CH}{CA}=\frac{4}{5}\Rightarrow CH=\frac{32}{5}\Rightarrow CD=\frac{64}{15}\)
\(\Rightarrow\frac{CE}{CD}=\frac{4}{5}\Rightarrow CE=\frac{256}{75}\)
\(ED=\sqrt{CD^2-CE^2}=\frac{64}{25}\)
\(\Rightarrow S_{CED}=\frac{8192}{1875}\)
d) Vì \(\Delta ACF\)cân tại C \(\Rightarrow KE//AF\Rightarrow\widehat{EKF}=\widehat{AFK}\)
Vì HK là trung tuyến \(\Delta AFK\)\(\Rightarrow\widehat{AFK}=\widehat{HKF}\)
Do đó : \(\widehat{HKF}=\widehat{EKF}\)
=> KD là phân giác \(\widehat{HKE}\)
# Aeri #
dễ òm
ta lấy: 9-1=8 ; 9-1=8 =>119=88
5-1=4 ; 5-4=1 =>145=41
9-1=8;9-7=2 => 179=82
=>9-1=8 ; 9-6=3 => 169=83
cách làm
Ta có: \(n^4+\frac{1}{4}=\frac{4n^4+1}{4}=\frac{\left(4n^4+4n^2+1\right)-4n^2}{4}=\frac{\left(2n^2+1\right)-4n^2}{4}=\frac{\left(2n^2+2n+1\right)\left(2n^2-2n+1\right)}{4}\)
Thế vô A ta được
\(A=\frac{\frac{5.1}{4}.\frac{25.13}{4}.\frac{61.41}{4}...\frac{1741.1625}{4}}{\frac{13.5}{4}.\frac{41.25}{4}.\frac{85.61}{4}...\frac{1861.1741}{4}}=\frac{1}{1861}\)
a) \(\dfrac{1+\dfrac{1}{x}}{x-\dfrac{1}{x}}=\dfrac{\dfrac{x+1}{x}}{\dfrac{x^2-1}{x}}=\dfrac{x+1}{x^2-1}=\dfrac{x+1}{\left(x+1\right)\left(x-1\right)}=\dfrac{1}{x-1}\left(x\ne0;x\ne1;x\ne-1\right)\)
b) \(\left(\dfrac{1}{x^2+4x+4}-\dfrac{1}{x^2-4x+4}\right):\left(\dfrac{1}{x+2}+\dfrac{1}{x-2}\right)\left(x\ne\pm2\right)\)
\(=\left[\dfrac{1}{\left(x+2\right)^2}-\dfrac{1}{\left(x-2\right)^2}\right]:\left(\dfrac{1}{x+2}+\dfrac{1}{x-2}\right)\)
\(=\dfrac{\left(\dfrac{1}{x+2}\right)^2-\left(\dfrac{1}{x-2}\right)^2}{\dfrac{1}{x+2}+\dfrac{1}{x-2}}\)
\(=\dfrac{\left(\dfrac{1}{x+2}-\dfrac{1}{x-2}\right)\left(\dfrac{1}{x+2}+\dfrac{1}{x-2}\right)}{\dfrac{1}{x+2}+\dfrac{1}{x-2}}\)
\(=\dfrac{1}{x+2}-\dfrac{1}{x-2}\)
\(=\dfrac{x-2-x-2}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{-4}{x^2-4}\)
c: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
\(\left(\dfrac{x}{x+1}+1\right):\left(1-\dfrac{3x^2}{1-x^2}\right)\)
\(=\dfrac{x+x+1}{x+1}:\dfrac{1-x^2-3x^2}{1-x^2}\)
\(=\dfrac{2x+1}{x+1}\cdot\dfrac{x^2-1}{4x^2-1}\)
\(=\dfrac{2x+1}{x+1}\cdot\left(x-1\right)\cdot\dfrac{\left(x+1\right)}{\left(2x-1\right)\left(2x+1\right)}\)
\(=\dfrac{\left(x-1\right)}{2x-1}\)
d:
ĐKXĐ: x<>1
\(\dfrac{3x}{x^3-1}+\dfrac{x-1}{x^2+x+1}\)
\(=\dfrac{3x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x-1}{x^2+x+1}\)
\(=\dfrac{3x+\left(x-1\right)^2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x-1}\)
e: ĐKXĐ: \(x\notin\left\{1;0;-1\right\}\)
\(\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+x}\left(\dfrac{1}{x^2-2x+1}+\dfrac{1}{1-x^3}\right)\)
\(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}\cdot\left(\dfrac{1}{\left(x-1\right)^2}-\dfrac{1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\)
\(=\dfrac{1}{x-1}-\left(x-1\right)\cdot\left(\dfrac{x^2+x+1-\left(x-1\right)}{\left(x-1\right)^2\cdot\left(x^2+x+1\right)}\right)\)
\(=\dfrac{1}{x-1}-\dfrac{x^2+x+1-x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+x+1-x^2-2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)