K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2021

Bài 1 : 

a, Ta có : \(x=4\Rightarrow\sqrt{x}=2\)

Thay vào biểu thức A ta được : 

\(A=\frac{2+4}{4+4}=\frac{6}{8}=\frac{3}{4}\)

b, \(x\ge0;x\ne16\)

\(B=\frac{x}{x-16}-\frac{2}{\sqrt{x}-4}-\frac{2}{\sqrt{x}+4}\)

\(=\frac{x-2\sqrt{x}-8-2\sqrt{x}+8}{x-16}=\frac{x-4\sqrt{x}}{x-16}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-4\right)}{\left(\sqrt{x}\pm4\right)}=\frac{\sqrt{x}}{\sqrt{x}+4}\)

c, Ta có : \(C=A.B=\frac{\sqrt{x}}{\sqrt{x}+4}.\frac{\sqrt{x}+4}{x+4}=\frac{\sqrt{x}}{x+4}\le0\)

Dấu ''='' xảy ra khi \(x=0\)( em ko chắc ý c lắm vì cũng chưa gặp bh )

trình bày như này thì khi thế x vào mẫu nó là 0 nên băn khoăn :) 

\(x+4\le0\)do \(\sqrt{x}\ge0\)\(\Leftrightarrow x\le-4\)

16 tháng 5 2021

Ta dễ thấy điểm rơi đạt tại \(x=2;y=3;z=4\)

Áp dụng bất đẳng thức AM-GM :

\(A=\left(\frac{3}{x}+\frac{3x}{4}\right)+\left(\frac{9}{2y}+\frac{y}{2}\right)+\left(\frac{4}{z}+\frac{z}{4}\right)+\frac{1}{4}\left(x+2y+3z\right)\)

\(\ge2\left(\frac{3}{2}+\frac{3}{2}+1\right)+\frac{1}{4}.20=13\)

Vậy Min A = 13 <=> x = 2 ; y = 3 ; z = 4

11 tháng 6 2021

Bài 5

\(a - b = 2 <=> b = a - 2\)

Do đó: \(P = 3a^2 + (a-2)^2 + 8\)

\(= 3a^2 + a^2 - 4a + 4 + 8\)

\(= 4a^2 - 4a + 12\)

\(= (2a - 1)^2 + 11\)

Vì \((2a - 1)^2 \geq 0 \) với mọi a nên \(= (2a - 1)^2 + 11 \geq 11 \) hay \(P \geq 11\)

Dấu "=" xảy ra \(\begin{cases} a - b = 2 \\ 2a - 1 = 0 \\\end{cases} <=> \begin{cases} a = \dfrac{1}{2} \\ b = -\dfrac{3}{2} \\\end{cases}\)

Vậy giá trị nhỏ nhất của P là 11 tại \(\begin{cases} a = \dfrac{1}{2} \\ b = -\dfrac{3}{2} \\\end{cases}\)

11 tháng 6 2021

câu hình:

a) Vì AB là đường kính \(\Rightarrow\angle ADB=90\Rightarrow\angle EDB+\angle EHB=180\)

\(\Rightarrow EDHB\) nội tiếp

b) Xét \(\Delta AHE\) và \(\Delta ADB:\) Ta có: \(\left\{{}\begin{matrix}\angle DABchung\\\angle AHE=\angle ADB=90\end{matrix}\right.\)

\(\Rightarrow\Delta AHE\sim\Delta ADB\left(g-g\right)\Rightarrow\dfrac{AH}{AD}=\dfrac{AE}{AB}\Rightarrow AB.AH=AD.AE\)

mà \(AH.AB=AC^2\) (hệ thức lượng) \(\Rightarrow AC^2=AD.AE\)

c) Vì \(EF\parallel AB\) \(\Rightarrow\angle CFE=\angle CBA=\angle CDA=\angle CDE\)

\(\Rightarrow CDFE\) nội tiếp mà \(\angle CEF=90\) \((EF\parallel AB,AB\bot CH)\)

\(\Rightarrow\angle CDF=90\Rightarrow CD\bot DF\)

Vì \(\Delta CDF\) vuông tại D có K là trung điểm CF \(\Rightarrow KC=KD\)

\(\Rightarrow\Delta KCD\) cân tại K \(\Rightarrow\angle DKB=2\angle DCB=2\angle DAB=\angle DOB\)

\(\Rightarrow DKOB\) nội tiếp \(\Rightarrow K\in\left(OBD\right)\)undefined

 

 

14 tháng 6 2019

à nhon mik thiếu 

Cho a > 0; b > 0; c > 0

Chứng minh bất đẳng thức: 40 đề luyện thi học sinh giỏi môn Toán lớp 9

abc là số bất kì lớn hơn 0

học tốt

13 tháng 10 2017

arigato mk đang ôn thi mk đang học lớp 9 sắp thi 10 r hông bít ang năm thi thế nào nữa

14 tháng 10 2017

đề này khó hơn hà nội :)

5 tháng 10 2018

a,Trong \(\Delta\) ABH có AHB=900 (BH \(\perp\) BC tại H -gt)

AH2 + BH2 =AB2 (định lý Pi-ta-go)

T/s:162 +252 =AB2

\(\Rightarrow\) AB2 =881

mà AB>0

\(\Rightarrow\) AB=\(\sqrt{881}\)\(\approx\) 29.68

Trong\(\Delta\) ABC có BAC=900 (gt), Đường cao AH (gt)

AH2= BH*CH (hệ thức lượng)

T/s: 162=25*CH

\(\Rightarrow\) CH=\(\dfrac{16^2}{25}\) = 10.24

Có:BH+HC=BC(H\(\in\) BC)

T/s: 25+10.24=BC

\(\Rightarrow\) BC=35.24

Trong \(\Delta\) ABC có:BAC=900 (GT)

AB2 +AC2 =BC2(Định lý Py-ta-go)

T/s:29.682+AC2\(\approx\)35.242

\(\Rightarrow\) AC2\(\approx\)35.242-29.682

\(\approx\)360.95

Mà AC>0

\(\Rightarrow\) AC\(\approx\) 19

3 tháng 8 2016

Bài này pạn lấy cách làm ở đâu vậy ?

Đề 1:

Câu 1: A

Câu 2: A

Đề 2: 

Câu 1: B

Câu 2: C

13 tháng 3 2020

Gọi x là số học sinh dự thi vào lớp 10 của trường A (h/s, \(x\in N\)\(0< x< 435\))

y là số học sinh dự thi vào lớp 10 của trường B (h/s, \(y\in N\)\(0< y< 435\))

Vì hai trường A và B có 435 học sinh dự thi nên ta có PT: \(x+y=435\) (1)

Vì trường A có tỉ lệ thi đỗ vào lớp 10 là 85%, trường B có tỉ lệ thi đỗ vào lớp 10 là 90%, và cả hai trường có tỉ lệ thi đỗ vào lớp 10 là 87% nên ta có PT: \(85\%x+90\%y=87\%\cdot435\) (2)

Từ (1) và (2), ta có HPT: \(\hept{\begin{cases}x+y=435\\85\%x+90\%y=87\%\cdot435\end{cases}}\)

Giải HPT, ta có: \(\hept{\begin{cases}x=261\\y=174\end{cases}}\) (TMĐK)

Vậy trường A có 261 học sinh dự thi và trường B có 174 học sinh dự thi, vào lớp 10.

13 tháng 3 2020

Gọi x là số học sinh dự thi vào lớp 10 của trường A (h/s, \(x\in N\),\(0< x< 500\))

y là số học sinh dự thi vào lớp 10 của trường B (h/s, \(y\in N\),\(0< y< 500\))

Vì cả hai trường có 435 thi đỗ vào lớp 10 đạt tỉ lệ là 87% nên ta có PT: \(x+y=\frac{435}{87\%}\) <=> \(x+y=500\) (1)

Vì trường A có tỉ lệ thi đỗ vào lớp 10 là 85%, trường B có tỉ lệ thi đỗ vào lớp 10 là 90%, và cả hai trường có 435 học sinh thi đỗ vào lớp 10 nên ta có PT: \(85\%x+90\%y=435\) (2)

Từ (1) và (2), ta có HPT: \(\hept{\begin{cases}x+y=500\\85\%x+90\%y=435\end{cases}}\)

Giải HPT, ta có: \(\hept{\begin{cases}x=300\\y=200\end{cases}}\) (TMĐK)

Vậy trường A có 300 học sinh dự thi và trường B có 200 học sinh dự thi, vào lớp 10.