Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/30+1/42+1/56+1/72+1/90+1/110+1/132
A=1/5.6+1/6.7+1/7.8+1/8.9+1/9.10+1/10.11+1/11.12
A=1/5-1/6+1/6-1/7+1/7-1/8+...-1/11+1/12
A=1/5-1/12
A=7/60
Vậy A= 7/60
a.
\(\frac{1}{2\times3}=\frac{1}{6}\)
\(\frac{1}{2}-\frac{1}{3}=\frac{3}{6}-\frac{2}{6}=\frac{1}{6}\)
\(\Rightarrow\frac{1}{2\times3}=\frac{1}{2}-\frac{1}{3}\)
b.
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+.....+\frac{1}{2005\times2006}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{2005}-\frac{1}{2006}\)
\(=1-\frac{1}{2006}\)
\(=\frac{2005}{2006}\)
Chúc bạn học tốt
\(S=3+\dfrac{3}{2}+\dfrac{3}{2^2}+...+\dfrac{3}{2^9}\\ 2S=6+3+\dfrac{3}{2}+...+\dfrac{3}{2^8}\\ 2S-S=\left(6+3+\dfrac{3}{2}+...+\dfrac{3}{2^8}\right)-\left(3+\dfrac{3}{2}+\dfrac{3}{2^2}+...+\dfrac{3}{2^9}\right)\\ S=6-\dfrac{3}{2^9}\\ S=6-\dfrac{3}{512}\\ S=5\dfrac{509}{512}\)
A = 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90 + 1/110 + 1/132
A = 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10 + 1/10.11 + 1/11.12
A = 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + 1/8 - 1/9 + 1/9 - 1/10 + 1/10 - 1/11 + 1/11 - 1/12
A = 1/4 - 1/12 (Cứ hai thằng cạnh nhau cộng lại bằng 0, chỉ còn thằng đầu và thằng cuối)
A = (3 - 1)/12
A = 2/12
A = 1/6
\(A=\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}\)
\(A=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}\)\(A=\dfrac{1}{5}-\dfrac{1}{12}\)
\(A=\dfrac{12}{60}-\dfrac{5}{60}=\dfrac{7}{60}\)
a,Ta có \(\dfrac{1}{2.3}\)=\(\dfrac{1}{6}\)
\(\dfrac{1}{2}-\dfrac{1}{3}\)=\(\dfrac{3}{6}-\dfrac{2}{6}\)=\(\dfrac{1}{6}\)
=>\(\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\)
b, \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2005.2006}\)
=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{2005}-\dfrac{1}{2006}\)
=\(\dfrac{1}{1}-\dfrac{1}{2006}\)
=\(\dfrac{2006}{2006}-\dfrac{1}{2006}\)
=\(\dfrac{2005}{2006}\)
Ta có
\(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{\left(n+1\right)-n}{n.\left(n+1\right)}=\dfrac{1}{n.\left(n+1\right)}\)
Vậy \(\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\)
câu hỏi đâu bn?