Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề số 3.
1.
a,\(4x\left(5x^2-2x+3\right)\)
\(=20x^3-8x^2+12x\)
b.\(\left(x-2\right)\left(x^2-3x+5\right)\)
\(=x^3-3x^2+5x-2x^2+6x-10\)
\(=x^3-5x^2+11x-10\)
c,\(\left(10x^4-5x^3+3x^2\right):5x^2\)
\(=2x^2-x+\dfrac{3}{5}\)
d,\(\left(x^2-12xy+36y^2\right):\left(x-6y\right)\)
\(=\left(x-6y\right)^2:\left(x-6y\right)\)
\(=x-6y\)
2.
a,\(x^2+5x+5xy+25y\)
\(=\left(x^2+5x\right)+\left(5xy+25y\right)\)
\(=x\left(x+5\right)+5y\left(x+5\right)\)
\(=\left(x+5y\right)\left(x+5\right)\)
b,\(x^2-y^2+14x+49\)
\(=\left(x^2+14x+49\right)-y^2\)
\(=\left(x+7\right)^2-y^2\)
\(=\left(x+7-y\right)\left(x+7+y\right)\)
c,\(x^2-24x-25\)
\(=x^2+25x-x-25\)
\(=\left(x^2-x\right)+\left(25x-25\right)\)
\(=x\left(x-1\right)+25\left(x-1\right)\)
\(=\left(x+25\right)\left(x-1\right)\)
3.
a,\(5x\left(x-3\right)-x+3=0\)
\(5x\left(x-3\right)-\left(x-3\right)=0\)
\(\left(5x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{5}\) hoặc \(x=3\)
b.\(3x\left(x-5\right)-\left(x-1\right)\left(2+3x\right)=30\)
\(3x^2-15x-\left(2x+3x^2-2-3x\right)=30\)
\(3x^2-15x-2x-3x^2+2+3x=30\)
\(-14x+2=30\)
\(-14x=28\)
\(x=-2\)
c,\(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(x^2+3x+2x+6-\left(x^2+5x-2x-10\right)=0\)
\(x^2+5x+6-x^2-5x+2x+10=0\)
\(2x+16=0\)
\(2x=-16\)
\(x=-8\)
Mình học chật hình không giúp bạn được.Xin lỗi!
23.27. \(x^2-y^2-2x+1\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right)\left(x-1+y\right)\)
23.25.
\(\left(x^2-4x\right)^2+\left(x-2\right)^2-10\)
\(=\left(x^2-4x\right)^2-4+\left(x-2\right)^2-6\)
\(=\left(x^2-4x+4\right)\left(x^2-4x-4\right)+x^2-4x+4-6\)
\(=\left(x^2-4x+4\right)\left(x^2-4x-10\right)\)
23.23
\(x^3-2x^2-6x+27\)
\(=\left(x^3+27\right)-2x\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x+9-2x\right)\)
\(=\left(x+3\right)\left(x^2-5x+9\right)\)
Câu 2:
Gọi x (km ) là quãng đường AB ( x > 0)
Thời gia lúc đi của xe máy là :\(\dfrac{x}{30}\)( h)
Thời gian lúc về của xe máy là : \(\dfrac{x}{40}\)(h)
Theo đề bài ta có :
\(\dfrac{x}{30}-\dfrac{x}{40}=\dfrac{40}{60}=\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{4x-3x}{120}=\dfrac{80}{120}\)
\(\Leftrightarrow4x-3x=80\)
\(\Leftrightarrow x=80\) (t/m)
Vậy quãng đường AB dài 80 km
1. A ko chia hết co B
2.
a, -2x+5
b, x^2
3.
a, 9x(x+3)(x-3)
b,c,d mink k bít xin lổi nha
4.
2x^2-4x+1
ta có : \(98.102=98.\left(100+2\right)=9800+196=9996< 10000\)
\(\Rightarrow98.102< 10000\) vậy \(98.102< 10000\)
Câu 3 ( Đề 1)
a) A = ( x - 2)2 - ( x + 3)( x - 3)
A = x2 - 4x + 4 - x2 + 9
A = - 4x + 13
b) B = 4x( x + 3) - 3x(4 + x)
B = 4x2 + 12x - 12x - 3x2
B = x2
Câu 4 . a) 5x3 - 45x
= 5x( x2 - 32)
= 5x( x - 3)( x + 3)
b) 5x2 + 5xy - x - y
= 5x( x + y) - ( x +y)
= ( x + y)( 5x - 1)
c) x3 - 9x2y + xy2 - 9y3
= x( x2 + y2) - 9y( x2 + y2)
= ( x2 + y2)( x - 9y)
Câu 3 : ( đề 2)
a) A = ( x - 2)2 -( x + 1)( x - 1) - x( 1 - x)
A= x2 - 4x + 4 - x2 + 1 - x + x2
A = x2 - 5x + 5
b)B = 7x( x - 4) - 2x( x - 6)
B = 7x2 - 28x - 2x2 + 12x
B = 5x2 - 16x
Cau 4 .
a) 4x3 - 64x
= 4x( x2 - 42)
= 4x( x - 4)( x + 4)
b) x3 + x + 5x2 + 5
= x( x2 + 1) + 5( x2 + 1)
= ( x2 + 1)( x + 5)
c) x2 - 3xy - 10y2
= x2 - (2y)2 - 3xy - 6y2
= ( x - 2y)( x + 2y) - 3y( x + 2y)
= ( x + 2y)( x - 5y)
Cau 5 . 4x2 - 5x + x3 - 20
= x2( x + 4) - 5( x + 4)
= ( x + 4)( x2 - 5)
Vay phep chia : ( 4x2 - 5x + x3 - 20) cho da thuc ( x + 4) duoc thuong la x2 - 5
bài 4
a) 4x3-64x
= 4x(x2-16)
b)x3+x+5x2+5
= (x3+x)+(5x2+5)
= x(x2+1)+5(x2+1)
= (x2+1)(x+5)
1) Giải:
a) \(\left(x+2\right)^2-2\left(x+2\right)\left(x-8\right)+\left(x-8\right)^2\)
= \(\left(x+2-x+8\right)^2=10^2=100\)
Vậy biểu thức trên không phụ thuộc vào biến.
b) \(\left(x+y-z-t\right)^2-\left(z+t-x-y\right)^2\)
= \(\left(x+y-z-t-z-t+x+y\right)\left(x+y-z-t+z+t-x-y\right)\)
= \(\left(2x+2y-2z-2t\right).0=0\)
Vậy biểu thức trên không phụ thuộc vào biến.
2) Giải:
Ta có: \(n^3-n=n\left(n^2-1\right)=n.\left(n-1\right).\left(n+1\right)\)
Tích của 3 số nguyên liên tiếp sẽ chia hết cho 6.
Mà n-1 ; n và n+1 là ba số nguyên liên tiếp ( n \(\in\) Z )
Nên n(n-1)(n+1) chia hết cho 6 hay n3-n chia hết cho 6.
3) Giải:
Ta có: \(x+3y=xy+3\)
\(\Leftrightarrow x+3y-xy-3=0\)
\(\Leftrightarrow-x\left(y-1\right)+3\left(y-1\right)=0\)
\(\Leftrightarrow\left(y-1\right)\left(3-x\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}y-1=0\\3-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=3\end{matrix}\right.\)
Vậy ( x ; y ) = ( 3 : 1 )
Câu 1:
\(\text{ a) }\left(x+2\right)^2-2\left(x+2\right)\left(x-8\right)+\left(x-8\right)^2\\ =\left[\left(x+2\right)-\left(x-8\right)\right]^2\\ =\left(x+2-x+8\right)^2\\ =10^2=100\\ \text{Vậy giá trị của biểu thức không phụ thuộc vào biến.}\\ \)
\(\text{b) }\left(x+y-z-t\right)^2-\left(z+t-x-y\right)^2\\ =\left[\left(x+y-z-t\right)+\left(z+t-x-y\right)\right]\left[\left(x+y-z-t\right)-\left(z+t-x-y\right)\right]\\ =\left(x+y-z-t+z+t-x-y\right)\left(x+y-z-t-z-t+x+y\right)\\ =\left[\left(x-x\right)+\left(y-y\right)-\left(z-z\right)-\left(t-t\right)\right]\left(x+y-z-t-z-t+x+y\right)\\ =0\cdot\left(x+y-z-t-z-t+x+y\right)\\ =0\\ \text{Vậy giá trị của biểu thức không phụ thuộc vào biến.}\)