mn giúp t nhé , tks

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 7 2017

Lời giải:

Áp dụng BĐT AM-GM:

\((2a+b+c)^2=a^2+(a+b+c)^2+2a(a+b+c)=a^2+\frac{(a+b+c)^2}{9}+\frac{8(a+b+c)^2}{9}+2a(a+b+c)\)

\(\geq \frac{2a(a+b+c)}{3}+\frac{8(a+b+c)^2}{9}+2a(a+b+c)=\frac{8(a+b+c)^2}{9}+\frac{8a(a+b+c)}{3}\)

Suy ra \(\frac{1}{(2a+b+c)^2}\leq \frac{9}{8(a+b+c)(4a+b+c)}\Rightarrow \sum \frac{1}{(2a+b+c)^2}\leq \frac{9}{8(a+b+c)}\sum \frac{1}{4a+b+c}\)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{4a+b+c}\leq \frac{1}{36}\left (\frac{1}{a}+\frac{1}{a}+\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{36}\left (\frac{4}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow \sum \frac{1}{4a+b+c}\leq \frac{1}{6}\left (\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Do đó \(\sum \frac{1}{(2a+b+c)^2}\leq \frac{9}{8(a+b+c)}\sum \frac{1}{4a+b+c}\leq \frac{9}{8(a+b+c)}.\frac{1}{6}\left (\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{9}{8}.\frac{1}{6}=\frac{3}{16}\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=1\)

12 tháng 10 2016

đẹp quá nhở

14 tháng 10 2016

xik lắm eyeu

17 tháng 9 2017

BĐT\(\Leftrightarrow\left(x^2+y^2\right)^3\le2\left(x^3+y^3\right)^2\)( đúng theo BĐT holder)

Hay AM-GM:

\(\dfrac{x^3}{x^3+y^3}+\dfrac{x^3}{x^3+y^3}+\dfrac{1}{2}\ge3\sqrt[3]{\dfrac{x^6}{2\left(x^3+y^3\right)^2}}=\dfrac{3x^2}{\sqrt[3]{2\left(x^3+y^3\right)^2}}\)

\(\dfrac{y^3}{x^3+y^3}+\dfrac{y^3}{x^3+y^3}+\dfrac{1}{2}\ge\dfrac{3y^2}{\sqrt[3]{2\left(x^3+y^3\right)^2}}\)

Cộng theo vế:

\(3\ge\dfrac{3\left(x^2+y^2\right)}{\sqrt[3]{2\left(x^3+y^3\right)^2}}\Leftrightarrow2\left(x^3+y^3\right)^2\ge\left(x^2+y^2\right)^3\)

Dấu = xảy ra khi x=y

AH
Akai Haruma
Giáo viên
17 tháng 9 2017

Lời giải:

BĐT cần chứng minh tương đương với:

\(2(x^3+y^3)^2\geq (x^2+y^2)^3\)

Áp dụng BĐT Cauchy-Schwarz:

\((x^3+y^3)(x+y)\geq (x^2+y^2)^2\Rightarrow x^3+y^3\geq \frac{(x^2+y^2)^2}{(x+y)}\)

\(\Leftrightarrow 2(x^3+y^3)^2\geq \frac{2(x^2+y^2)^4}{(x+y)^2}\)

Theo BĐT Am-Gm:

\((x+y)^2\leq 2(x^2+y^2)\Rightarrow 2(x^3+y^3)^2\geq \frac{2(x^2+y^2)^4}{2(x^2+y^2)}=(x^2+y^2)^3\)

Ta có đpcm.

Dấu bằng xảy ra khi \(x=y\)

17 tháng 9 2017

Đặt \(\left\{{}\begin{matrix}a-b=x\\b-c=y\\c-a=z\end{matrix}\right.\)thì \(x+y+z=0\).Ngoài ra còn suy ra được:

\(\left\{{}\begin{matrix}x+y=-z\\y+z-x\\x+z=-y\end{matrix}\right.\)

Xét \(A=x^4+y^4+z^4\)

Khai triển Newton để có được :

\(\left(x+y+z\right)^4=\sum x^4+4\sum xy\left(x^2+y^2\right)+12xyz\left(x+y+z\right)+6\sum x^2y^2\)

Vì x+y+z=0 nên \(\sum x^4=x^4+y^4+z^4=-4\sum xy\left(x^2+y^2\right)-6\sum x^2y^2\)

\(-4\sum xy\left(x^2+y^2\right)=-4\sum xy\left[\left(x+y\right)^2-2xy\right]=-4\sum xyz^2+8\sum x^2y^2\)(*)

\(\Rightarrow x^4+y^4+z^4=2\sum x^2y^2-4\sum xyz^2\)

\(=2\left(x^2y^2+y^2z^2+z^2x^2-2xyz^2-2xy^2z-2x^2yz\right)\)

( hm ,có biến ? )

Thực ra từ chỗ (*) thì z ( hoặc x hay y) chưa biết dương hay âm nên có thể đổi thành - z2

Khi đó \(A=2\left(xz+yz-xy\right)^2\)

\(\Rightarrow Bt=\sqrt{2A}=2\left|xz+yz-xy\right|\in Q\)

Câu hỏi đặt ra: liệu có luôn biến đổi được như vậy ? trong trường hợp cả 3 số > 0 thì sao ? Câu trả lời là có.Bởi Vì x+y+z=0 nên phải có ít nhất 1 số khác dấu với 2 số còn lại ( hay dựa vào x+y=-z )

24 tháng 9 2017

vjp quá <(")

2 tháng 9 2016

 Bảo Duy Cute sướng wá ha. có ngừi chúc n.n lun

2 tháng 9 2016

uk...thanks e 

5 tháng 2 2017

Bài 6: Gọi đồ thị hàm số y=ax+b là (d)

a)

Vì (d) đi qua A(0;2) nên 2=0x+b hay b=2 (1)

Vì (d) đi qua B(1;-3) nên -3=a+b (2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{\begin{matrix}b=2\\a+b=-3\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}a=-5\\b=2\end{matrix}\right.\)

Vậy: đồ thị hàm số cần tìm là y=-5x+2

b)

Vì (d) đi qua C(-5;3) nên 3=-5a+b (1)

Vì (d) đi qua D(\(\frac{3}{2}\);-1) nên -1=\(\frac{3}{2}\)a+b (2)

Từ (1), (2) ta có hệ phương trình:

\(\left\{\begin{matrix}-5a+b=3\\\frac{3}{2}a+b=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}a=-\frac{8}{13}\\b=-\frac{1}{13}\end{matrix}\right.\)

Vậy đồ thị hàm số cần tìm là y=\(-\frac{8}{13}\)x\(-\frac{1}{3}\)

5 tháng 9 2016

Bạn đúng là 1 người tốt bụng , quan tâm tới bạn bè , chắc chắn mọi điều tốt sẽ đến vs bạn

5 tháng 9 2016

Mặc dù mk ko bt bạn Hạ Thì là aiNNhưng mk chúc mừng sinh nhật bạn ấy 

2 tháng 9 2016

cái này đẹp hơn