Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn đúng là 1 người tốt bụng , quan tâm tới bạn bè , chắc chắn mọi điều tốt sẽ đến vs bạn
Mặc dù mk ko bt bạn Hạ Thì là aiNNhưng mk chúc mừng sinh nhật bạn ấy
Bài 1:
a: ĐKXĐ: x>0; x<>1
b: \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2}{\sqrt{x}-1}\)
c: Thay \(x=6+2\sqrt{5}\) vào A, ta được:
\(A=\dfrac{2}{\sqrt{5}+1-1}=\dfrac{2\sqrt{5}}{5}\)
d: Để |A|>A thì A>0
=>\(\sqrt{x}-1>0\)
hay x>1
thôi gợi ý :v dg chán đời lại mới coi xong anime, "Happy Ending" :v
By AM-GM have:
\(xy+xz+yz \ge 3\sqrt[3]{x^2y^2z^2} \)
\(\sqrt[3]{xyz} \le \sqrt{\dfrac{x^2+y^2+z^2}{3}} \)
\(x+y+z \le \sqrt{3(x^2+y^2+z^2)}\)
haizz vô dụng v~
\(\Rightarrow A \le \dfrac{\sqrt[3]{xyz}(x+y+z+\sqrt{x^2+y^2+z^2})}{3(x^2+y^2+z^2)} \)
\(\Rightarrow A \le \dfrac{\sqrt{\dfrac{x^2+y^2+z^2}{3}}(\sqrt{3(x^2+y ^2+z^2)}+\sqrt{x^2+y^2+z^2})}{3(x^2+y^2+z^2)}= \dfrac{3+\sqrt{3}}{9} \)