Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lũy thừa bậc n của một số hữu tỉ x, kí hiệu là \(x^n\) , là tích của n thừa số x (với n là số tự nhiên lớn hơn 1)
Lũy thừa với số mũ tự nhiên :
Định nghĩa : Lũy thừa bậc n của số hữu tỉ x, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
1/
Xét tg ABC có AB=AC => tg ABC cân tại A \(\Rightarrow\widehat{B}=\widehat{C}\) (Trong tg cân hai góc ở đáy = nhau)
BH=CH => AH là đường trung tuyến \(\Rightarrow AH\perp BC\) (trong tg cân đường trung tuyến xp từ đỉnh đồng thời là đường cao và đường trung trực)
2/ Ta có
\(MN\perp BC;CP\perp BC\) => MN//CP
MN=CP
=> Tứ giác MNPC là hình bình hành (Tứ giác có cặp cạnh đối // và = nhau thì tứ giác đó là hbh)
=> MN=CP; MC=NP; MP chung \(\Rightarrow\Delta MCP=\Delta PMN\left(c.c.c\right)\)
3/
Trong hình bình hành MNPC thì MP và NC là hai đường chéo hbh
=> I là trung điểm của NC (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)
Câu 1:
1;\(\dfrac{49}{4}\);\(\dfrac{125}{8}\);\(\dfrac{16}{81}\)
Câu 2
\(3^9\)=\(3^{3.3}\)=\(\left(3^3\right)^3\)=\(27^3\)
2\(^{12}\)=\(2^{4.3}=\left(2^4\right)^3=16^3\)