Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Stress:
1.
A. poem
B. father
C. lucky
D. designer
2.
A. modern
B. novel
C. musician
D. lovely
3.
A. frequent
B. special
C. curly
D. addition
4.
A. public
B. occasion
C. player
D. problem.
5.
A. effect
B. beauty
C. listen
D. brother.
1. For several weeks of preparation beforehand ( about December first ).
2. Children hang up the pillow case or sack.
3. It's reindeer.
4. It starts properly on 24 December.
5. Every year in Britain
b) \(\dfrac{2}{x^2+2x}+\dfrac{8-2x}{x^3+8}=\dfrac{2}{x\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x^2-2x+4\right)}\)\(=\dfrac{2\left(x^2-2x+4\right)}{x\left(x+2\right)\left(x^2-2x+4\right)}+\dfrac{2x}{x\left(x+2\right)\left(x^2-2x+4\right)}\)
\(=\dfrac{2x^2-4x+8+2x}{x\left(x+2\right)\left(x^2-2x+4\right)}=\dfrac{2x^2-2x+8}{x\left(x+2\right)\left(x^2-2x+4\right)}\)
c) \(\dfrac{x}{1-x^3}+\dfrac{1}{x^2+x-2}=\dfrac{-x}{x^3-1}+\dfrac{1}{x^2+2x-x-2}\)
\(=\dfrac{-x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x\left(x+2\right)-\left(x+2\right)}\)
\(=\dfrac{-x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{\left(x-1\right)\left(x-2\right)}\)
\(=\dfrac{-x\left(x-2\right)}{\left(x-1\right)\left(x-2\right)\left(x^2+x+1\right)}+\dfrac{1\left(x^2+x+1\right)}{\left(x-1\right)\left(x-2\right)\left(x^2+x+1\right)}\)\(=\dfrac{-x^2+2x+x^2+x+1}{\left(x-1\right)\left(x-2\right)\left(x^2+x+1\right)}\)
\(=\dfrac{3x+1}{\left(x-1\right)\left(x-2\right)\left(x^2+x+1\right)}\)
f) \(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{3x-2}{2x-4x^2}\)
\(=\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{2-3x}{2x\left(2x-1\right)}\)
\(=\dfrac{\left(1-3x\right)\left(2x-1\right)+6x^2-4x+2-3x}{2x\left(2x-1\right)}\)
\(=\dfrac{2x-1-6x^2+3x+6x^2-4x+2-3x}{2x\left(2x-1\right)}\)
\(=\dfrac{-2x+1}{2x\left(2x-1\right)}\)
\(=\dfrac{-\left(2x-1\right)}{2x\left(2x-1\right)}=\dfrac{-1}{2x}\)
h) \(\dfrac{1}{2x^2-x-1}+\dfrac{1}{6x^2+9x+3}\)
\(=\dfrac{1}{2x^2+x-2x-1}+\dfrac{1}{3\left(2x^2+3x+1\right)}\)
\(=\dfrac{1}{x\left(2x+1\right)-\left(2x+1\right)}+\dfrac{1}{3\left(2x^2+x+2x+1\right)}\)
\(=\dfrac{1}{\left(2x+1\right)\left(x-1\right)}+\dfrac{1}{3\left[x\left(2x+1\right)+\left(2x+1\right)\right]}\)
\(=\dfrac{1}{\left(2x+1\right)\left(x-1\right)}+\dfrac{1}{3\left(x+1\right)\left(2x+1\right)}\)
\(=\dfrac{3x+3+x-1}{3\left(2x+1\right)\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{4x+2}{3\left(2x+1\right)\left(x+1\right)\left(x-1\right)}=\dfrac{2}{3\left(x+1\right)\left(x-1\right)}\)
e) \(\dfrac{x}{x+2}+\dfrac{4}{x-2}+\dfrac{8x}{4-x^2}\)
\(=\dfrac{x}{x+2}+\dfrac{4}{x-2}+\dfrac{-8x}{x^2-2^2}\)
\(=\dfrac{x}{x+2}+\dfrac{4}{x-2}+\dfrac{-8x}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2-2x+4x+8-8x}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-6x+8}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2-2x-4x+8}{\left(x-2\right)\left(x+2\right)}=\dfrac{x\left(x-2\right)-4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{\left(x-2\right)\left(x-4\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-4}{x+2}\)
Ghi đề ra đi :vv Muốn bạn khác chăm giải hộ thì bạn cũng phải cố gắng chép ra cái đề chứ :vv
Thanh Vu , anh đăng từng bài được ko ạ
tra loi dc cau nao thi tra loi minh hieu