Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy:
\(\bullet \) Nếu \(a\vdots p\Rightarrow b\vdots p\Rightarrow a^b+b^a;a^a+b^b\vdots p\)
Mặt khác, \(a,b\) nên \(a^b+b^a;a^a+b^b\) chẵn, do đó \(a^b+b^a;a^a+b^b\vdots 2\)
Mà \((2,p)=1\Rightarrow a^a+b^b;a^b+b^a\vdots 2p\) (đpcm)
\(\bullet \) Nếu \((a,p)=(b,p)=1\)
+) Với \(a^b+b^a\)
\(a+b\equiv 0\pmod p\Rightarrow a\equiv -b\pmod p\)
Do đó, \(a^b+b^a\equiv (-b)^b+b^a\equiv b^a-b^b\pmod p\) (do \(b\) lẻ)
\(\Leftrightarrow a^b+b^a\equiv b^b(b^{a-b}-1)\pmod p\) \((\star)\)
Vì \(a-b\vdots p-1\Rightarrow a-b=k(p-1)\) (với \(k\in\mathbb{N})\)
\(\Rightarrow b^{a-b}-1=b^{k(p-1)}-1\)
Áp dụng định lý Fermat nhỏ với \((b,p)=1\) :
\(b^{p-1}\equiv 0\pmod p\Rightarrow b^{k(p-1)}\equiv 1\pmod p\)
\(\Leftrightarrow b^{k(p-1)}-1\equiv 0\pmod p\Leftrightarrow a^b+b^a\equiv 0\pmod p\)
Mặt khác cũng dễ cm \(a^b+b^a\vdots 2\), và \((p,2)=1\Rightarrow a^b+b^a\vdots 2p\) (đpcm)
+) Với \(a^a+b^b\)
\(a^a+b^b\equiv (-b)^a+b^b\equiv b^b-b^a\equiv b^a-b^b\equiv b^b(b^{a-b}-1)\pmod p\)
Đến đây giống y như khi xét \(a^b+b^a\) ( đoạn \((\star)\) ) ta suy ra \(a^a+b^b\equiv 0\pmod p\)
Mà cũng thấy \(a^a+b^b\vdots 2\), và \((2,p)=1\Rightarrow a^a+b^b\vdots 2p\)
20
Gọi n là số con cá trên một đơn vị diện tích hồ (n>0). Khi đó:
Cân nặng của một con cá là: P(n)=480−20nP(n)=480−20n
Cân nặng của n con cá là:nP(n)=480n−20n2,n>0nP(n)=480n−20n2,n>0
Xét hàm số:f(n)=480n−20n2,n>0f(n)=480n−20n2,n>0
Ta có:
f′(n)=480−40nf′(n)=0⇔n=12f′(n)=480−40nf′(n)=0⇔n=12
Lập bảng biến thiên ta thấy số cá phải thả trên một đơn vị diện tích hồ để có thu hoạch nhiều nhất là 12 con.
19 Gọi H là chân đường vuông góc kẻ từ A.
Áp dụng định lý Ta-lét cho các tam giác BAH và ABC ta được:
nên diện tích của hình chữ nhật sẽ là:
Vì không đổi nên S phụ thuộc tích BQ.AQ mà (bđt Cauchy)
nên
Dấu bằng xra khi BQ=AQ=>M là trung điểm AH
Câu 1:
Phương trình hoành độ giao điểm :
\(mx-\frac{x-2}{x-1}=0\Leftrightarrow mx^2-(m+1)x+2=0\)
Để 2 ĐTHS cắt nhau tại hai điểm phân biệt thì đương nhiên pt trên phải có hai nghiệm phân biệt
Do đó: \(\left\{\begin{matrix} m\neq 0\\ \Delta=(m+1)^2-8m>0\end{matrix}\right.\)\(\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ m^2-6m+1>0\end{matrix}\right.\) (1)
Áp dụng hệ thức viete: \(\left\{\begin{matrix} x_1+x_2=\frac{m+1}{m}\\ x_1x_2=\frac{2}{m}\end{matrix}\right.\)
Dễ thấy , đồ thị \(y=\frac{x-2}{x-1}\) có TCĐ \(x=1\) và TCN $y=1$
Khi đó, để 2 giao điểm thuộc hai nhánh của nó thì:
\(x_1>1;x_2<1 \Rightarrow (x_1-1)(x_2-1)<0\)
\(\Leftrightarrow \frac{2}{m}-\frac{m+1}{m}+1<0\Leftrightarrow \frac{1}{m}<0\Leftrightarrow m< 0\)(2)
Từ \((1),(2)\Rightarrow m< 0\)
Đáp án D
kẻm ưn nhé,bn cx zậy
ngủ ngon kiểu j khi tuần này thi esl, địa, sử, toán, lý, hóa, văn, sinh