GIÚP...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2023

a: \(x^3y+x-y-1\)

\(=\left(x^3y-y\right)+\left(x-1\right)\)

\(=y\left(x^3-1\right)+\left(x-1\right)\)

\(=y\left(x-1\right)\left(x^2+x+1\right)+\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2y+xy+y+1\right)\)

b: \(x^2\left(x-2\right)+4\left(2-x\right)\)

\(=x^2\left(x-2\right)-4\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2-4\right)\)

\(=\left(x-2\right)\cdot\left(x-2\right)\left(x+2\right)=\left(x+2\right)\cdot\left(x-2\right)^2\)

c: \(x^3-x^2-20x\)

\(=x\cdot x^2-x\cdot x-x\cdot20\)

\(=x\left(x^2-x-20\right)\)

\(=x\left(x^2-5x+4x-20\right)\)

\(=x\left[x\left(x-5\right)+4\left(x-5\right)\right]\)

\(=x\left(x-5\right)\left(x+4\right)\)

d: \(\left(x^2+1\right)^2-\left(x+1\right)^2\)

\(=\left(x^2+1+x+1\right)\left(x^2+1-x-1\right)\)

\(=\left(x^2+x+2\right)\left(x^2-x\right)\)

\(=x\left(x-1\right)\left(x^2+x+2\right)\)

0

a: Xét tứ giác DIHK có

góc DIH=góc DKH=góc KDI=90 độ

nên DIHK là hình chữ nhật

b: Xét tứ giác IHAK có

IH//AK

IH=AK

Do đó: IHAK là hình bình hành

=>B là trung điểm chung của IA và HK

Xét ΔIKA có IC/IK=IB/IA

nên BC//KA

Xét ΔIDA có IB/IA=IM/ID

nên BM//DA

=>B,C,M thẳng hàng

x-2-1012
y41014

 

HQ
Hà Quang Minh
Giáo viên
11 tháng 9 2023

Ta có bảng sau:

\(x\)

–2

–1

0

1

2

\(y\)

4

1

0

1

4

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

Những hình khối có dạng ở hình 11 được gọi là hình chóp tứ giác đều.

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

Xét \(\Delta ABE\) và \(\Delta ACD\) có:

\(\widehat {EBA} = \widehat {ACD}\) (giả thuyết)

\(\widehat {BAE} = \widehat {CAD} = 90^\circ \)

Do đó, \(\Delta ABE\backsim\Delta ACD\) (g.g)

Vì \(\Delta ABE\backsim\Delta ACD\) nên \(\frac{{AB}}{{AC}} = \frac{{EB}}{{CD}}\) (các cặp cạnh tương ứng)

Thay số, \(\frac{{20}}{{AC}} = \frac{{25}}{{15}} \Rightarrow AC = \frac{{20.15}}{{25}} = 12\)cm.

Áp dụng định lí Py – ta – go cho \(\Delta ABE\) vuông tại \(A\) ta có:

\(B{E^2} = A{E^2} + A{B^2} \Leftrightarrow A{E^2} = B{E^2} - A{B^2} = {25^2} - {20^2} = 225 \Rightarrow AE = \sqrt {225}  = 15\)cm.

Độ dài \(CE\) là:

15 – 12 = 3cm

Vậy \(CE = 3cm.\)

QT
Quoc Tran Anh Le
Giáo viên
14 tháng 1 2024

a) Dùng Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 trong công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 để kiểm tra DE, ta thấy độ dài đoạn thẳng DE bằng 4 cm.

Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

b) Lưu hình vẽ ở HĐ3 thành tệp hth.png.

Vào Hồ sơ → Chọn Xuất bản → Chọn PNG image (.png).

Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Trên màn hình hiện lên cửa sổ như sau:

Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Ta đổi tên tệp thành hbh (như hình vẽ), sau đó chọn xuất bản.

Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

c) Vẽ hình thang cân ADEC có AD // EC, AD = 6 cm, CE = 4 cm, AC = DE = 3 cm theo các bước sau:

Bước 1. Vẽ đoạn thẳng AB và có độ dài bằng AD – EC = 2 cm tương tự như Bước 1 của HĐ1.

Bước 2. Vẽ tam giác ABC có BC = 3 cm (độ dài của DE), AC = 3 cm.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Nháy chuột vào điểm A, nhập bán kính bằng 3.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8  → Nháy chuột vào điểm B, nhập bán kính bằng 3.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 →  Lần lượt nháy chuột vào hai đường tròn vừa vẽ, ta được 2 giao điểm, chọn 1 điểm là điểm C.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 →  Chọn điểm A → Chọn điểm C.

 Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 →  Chọn điểm B → Chọn điểm C.

Bước 3. Vẽ điểm D nằm trên tia AB sao cho AD = 6 cm.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 →  Nháy chuột vào điểm A, nhập bán kính bằng 6.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Nháy chuột lần lượt vào các điểm A, B.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 →  Lần lượt nháy chuột vào tia AB và đường tròn vừa vẽ, ta được điểm D.

Bước 4. Vẽ điểm E sao cho DE // BC và CE // AB.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Nháy chuột vào điểm C → Nháy chuột vào đoạn thẳng AB.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Nháy chuột vào điểm D → Nháy chuột vào đoạn thẳng CB.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Lần lượt nháy chuột vào đường thẳng vừa vẽ.

Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Ẩn các đường tròn, các đường thẳng, đoạn thẳng AB, BC và điểm B. Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 để nối A với D, D với E, E với C và thu được hình thang cân ADEC thỏa mãn yêu cầu đề bài.

Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

Đáp án đúng là: C

Trong Hình 4.31 có \(\widehat {AMN} = \widehat {ABC}\) mà hai góc này ở vị trí đồng vị nên MN // BC.

Áp dụng định lí Thalès vào tam giác ABC, ta có:

\(\dfrac{{AM}}{{BM}} = \dfrac{{AN}}{{CN}}\) hay \(\dfrac{2}{3} = \dfrac{{1,5}}{x}\)

Suy ra \(x = \dfrac{{1,5.3}}{2} = 2,25\)

Vậy x = 2,25.

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

Trong Hình 4.23 có \(\widehat {DME} = \widehat {MEF}\) nên EM là tia phân giác của \(\widehat {{\rm{DEF}}}\).

Áp dụng tính chất đường phân giác của tam giác, ta có:

\(\dfrac{{E{\rm{D}}}}{{EF}} = \dfrac{{M{\rm{D}}}}{{MF}}\) hay \(\dfrac{{4,5}}{x} = \dfrac{{3,5}}{{5,6}}\)

Suy ra: \(x = \dfrac{{5,6.4,5}}{{3,5}} = 7,2\)(đvđd)

Vậy x = 7,2 (đvđd).

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

Trong Hình 4.30 có \(\widehat {DEM} = \widehat {EMN}\) mà hai góc này ở vị trí so le trong nên MN // DE.

Áp dụng định lí Thalès vào tam giác DEF có MN // DE, ta có:

\(\dfrac{{MF}}{{M{\rm{D}}}} = \dfrac{{NF}}{{NE}}\) hay \(\dfrac{2}{3} = \dfrac{x}{6}\)

Suy ra \(x = \dfrac{{2.6}}{3} = 4\) (đvđd).

Vậy x = 4 (đvđd).

HQ
Hà Quang Minh
Giáo viên
20 tháng 7 2023

Do tứ giác ABCD là hình thoi nên AB = BC = CD = DA.