Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 2 tam giác ABC và MNP có:
AB=MN (gt)
\(\widehat {BAC} = \widehat {NMP}\) (gt)
AC=MP (gt)
Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)
Em thấy bạn Vuông nói đúng
Để chứng minh điều này, ta có thể chỉ ra trường hợp 2 góc bằng nhau nhưng không đối đỉnh.
Ví dụ:
\(\widehat {{O_1}} = \widehat {{O_2}}\) nhưng hai góc này không đối đỉnh
+ Biểu đồ biểu diễn nhiệt độ trung bình các tháng năm 2020 tại Thành phố Hồ Chí Minh.
+ Đơn vị thời gian là tháng, đơn vị số liệu là độ C.
+ Tháng 4 có nhiệt độ trung bình cao nhất.
+ Tháng 12 có nhiệt độ trung bình thấp nhất.
+ Nhiệt độ trung bình tăng trong những khoảng thời gian từ tháng: 1 – 2; 2 – 3; 3 – 4.
+ Nhiệt độ trung bình giảm trong những khoảng thời gian từ tháng: 4 – 5; 5 – 6; 6 – 7; 8 – 9; 10 – 11; 11 – 12.
+ Nhiệt độ trung bình không đổi trong những khoảng thời gian từ tháng: 7 – 8; 9 – 10.
\(5x=3y\Rightarrow x=\dfrac{3y}{5}\)
Thay \(x=\dfrac{3y}{5}\) vào biểu thức \(x^2-y^2=-4\) ta có:
\(\left(\dfrac{3y}{5}\right)^2-y^2=-4\)
\(\dfrac{9y^2}{25}-y^2=-4\)
\(-\dfrac{16}{25}y^2=-4\)
\(y^2=-\dfrac{4}{\dfrac{-16}{25}}\)
\(y^2=\dfrac{25}{4}\)
\(\Rightarrow y=-\dfrac{5}{2};y=\dfrac{5}{2}\)
*) \(y=-\dfrac{5}{2}\Rightarrow x=\dfrac{3.\left(-\dfrac{5}{2}\right)}{5}=-\dfrac{3}{2}\)
*) \(y=\dfrac{5}{2}\Rightarrow x=\dfrac{3.\dfrac{5}{2}}{5}=\dfrac{3}{2}\)
Vậy ta được các cặp giá trị \(\left(x;y\right)\) thỏa mãn:
\(\left(-\dfrac{3}{2};-\dfrac{5}{2}\right);\left(\dfrac{3}{2};\dfrac{5}{2}\right)\)
Lời giải:
Áp dụng tính chất tổng 3 góc trong một tam giác bằng $180^0$
a.
$x=180^0-80^0-45^0=55^0$
b.
$y=180^0-30^0-90^0=60^0$
c.
$z=180^0-30^0-25^0=125^0$
Đoạn thẳng đơn vị được chia thành 6 phần bằng nhau, lấy một đoạn làm đơn vị mới, đơn vị mới bằng \(\frac{1}{6}\) đơn vị cũ.
Điểm A nằm bên phải gốc O và cách O một đoạn bằng 10 đơn vị mới. Do đó điểm A biểu diễn số hữu tỉ \(\frac{{10}}{6} = \frac{5}{3}\)
Điểm B nằm bên trái gốc O và cách O một đoạn bằng 5 đơn vị mới. Do đó điểm B biểu diễn số hữu tỉ \(\frac{{ - 5}}{6}\)
Điểm C nằm bên trái gốc O và cách O một đoạn bằng 13 đơn vị mới. Do đó điểm C biểu diễn số hữu tỉ \(\frac{{ - 13}}{6}\)
Kẻ Az//Bx//Dy
=> BAD = BAz + DAz = (180o - ABx) + (180o - ADy) = 30o + 60o = 90o
\(\dfrac{5}{8}+\dfrac{3}{8}x=1\dfrac{1}{8}\)
\(\Rightarrow\dfrac{5}{8}+\dfrac{3}{8}x=\dfrac{9}{8}\)
\(\Rightarrow\dfrac{3}{8}x=\dfrac{9}{8}-\dfrac{5}{8}\)
\(\Rightarrow\dfrac{3}{8}x=\dfrac{4}{8}\)
\(\Rightarrow x=\dfrac{4}{8}:\dfrac{3}{8}\)
\(\Rightarrow x=\dfrac{4}{8}\cdot\dfrac{8}{3}=\dfrac{4}{3}\)
\(---\)
\(\dfrac{1}{2}-\left(\dfrac{1}{3}x-2\right)=\dfrac{2}{3}\)
\(\Rightarrow\dfrac{1}{3}x-2=\dfrac{1}{2}-\dfrac{2}{3}\)
\(\Rightarrow\dfrac{1}{3}x-2=-\dfrac{1}{6}\)
\(\Rightarrow\dfrac{1}{3}x=-\dfrac{1}{6}+2\)
\(\Rightarrow\dfrac{1}{3}x=\dfrac{11}{6}\)
\(\Rightarrow x=\dfrac{11}{6}:\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{11}{6}\cdot3=\dfrac{11}{2}\)
\(---\)
\(\left(3x+4\right)\left(2x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x+4=0\\2x-3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=-4\\2x=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=\dfrac{3}{2}\end{matrix}\right.\)
\(--\)
\(-4+4x=9x-14\)
\(\Rightarrow4x-9x=-14+4\)
\(\Rightarrow-5x=-10\)
\(\Rightarrow x=\left(-10\right):\left(-5\right)=2\)
\(---\)
\(\left\{\left[\left(\dfrac{1}{25}-0,6\right)^2:\dfrac{49}{125}\right]\cdot\dfrac{5}{6}\right\}-\left[\left(\dfrac{-1}{3}\right)+\dfrac{1}{2}\right]\)
\(=\left[\left(-\dfrac{14}{25}\right)^2\cdot\dfrac{125}{49}\right]\cdot\dfrac{5}{6}-\dfrac{1}{6}\)
\(=\left(\dfrac{196}{625}\cdot\dfrac{125}{49}\right)\cdot\dfrac{5}{6}-\dfrac{1}{6}\)
\(=\dfrac{4}{5}\cdot\dfrac{5}{6}-\dfrac{1}{6}\)
\(=\dfrac{4}{6}-\dfrac{1}{6}\)
\(=\dfrac{3}{6}\)
\(=\dfrac{1}{2}\)
\(Toru\)