Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác DIHK có
góc DIH=góc DKH=góc KDI=90 độ
nên DIHK là hình chữ nhật
b: Xét tứ giác IHAK có
IH//AK
IH=AK
Do đó: IHAK là hình bình hành
=>B là trung điểm chung của IA và HK
Xét ΔIKA có IC/IK=IB/IA
nên BC//KA
Xét ΔIDA có IB/IA=IM/ID
nên BM//DA
=>B,C,M thẳng hàng
a) Dùng trong công cụ để kiểm tra trung điểm AC và BD, ta thấy trung điểm AC và BD trùng nhau.
b) Lưu hình vẽ ở HĐ2 thành tệp hbh.png.
Vào Hồ sơ → Chọn Xuất bản → Chọn PNG image (.png).
Trên màn hình hiện lên cửa sổ như sau:Ta đổi tên tệp thành hbh (như hình vẽ), sau đó chọn xuất bản.
c) Tương tự, ta vẽ một hình thoi ABCD có cạnh 4 cm theo các bước sau:Bước 1. Vẽ đoạn thẳng AB và có độ dài 4 cm tương tự như Bước 1 của HĐ1.
Bước 2. Vẽ điểm C sao cho BC = 4 cm.
Chọn công cụ → Chọn → Nháy chuột vào điểm B, nhập bán kính bằng 4.
Chọn công cụ → Chọn → Chọn điểm C bất kỳ nằm trên đường tròn tâm B.
Chọn công cụ → Chọn → Nháy chuột vào điểm C, nhập bán kính bằng 4.
Chọn công cụ → Chọn → Lần lượt nháy chuột đường tròn tâm A và đường tròn C.
Chọn công cụ để nối B với C, C với D, D với A.
Bước 3. Ẩn đường tròn và thu được hình thoi ABCD.
\(x^2=1^2+1^2\left(pythagore\right)\\ \Rightarrow x=\sqrt{2}\\ \sqrt{5}^2=1^2+y^2\left(pythagore\right)\\ \Rightarrow y=\sqrt{4}=2\)
a) \(x^2=1^2+1^2=2\Rightarrow x=\sqrt[]{2}\)
b) \(\left(\sqrt[]{5}\right)^2=y^2+1^2\Rightarrow y^2=5-1=4\Rightarrow y=2\)
Xét tứ giác ABCD có:
\(\begin{array}{l} \widehat A + \widehat B + \widehat C + \widehat D = {360^0}\\{85^0} + x + {65^0} + {75^0} = {360^0}\\x = {360^0} - {85^0} - {65^0} - {75^0} = {135^0}\end{array}\)
Trong Hình 4.23 có \(\widehat {DME} = \widehat {MEF}\) nên EM là tia phân giác của \(\widehat {{\rm{DEF}}}\).
Áp dụng tính chất đường phân giác của tam giác, ta có:
\(\dfrac{{E{\rm{D}}}}{{EF}} = \dfrac{{M{\rm{D}}}}{{MF}}\) hay \(\dfrac{{4,5}}{x} = \dfrac{{3,5}}{{5,6}}\)
Suy ra: \(x = \dfrac{{5,6.4,5}}{{3,5}} = 7,2\)(đvđd)
Vậy x = 7,2 (đvđd).
Đồ thị hàm số là tập hợp các điểm có tọa độ \(\left( { - 2;2} \right);\left( { - 1;1} \right);\left( {0;0} \right);\left( {1; - 1} \right);\left( {2; - 2} \right)\) được vẽ trên mặt phẳng tọa độ như hình dưới đây:
a)
Xét tam giác ABC có MN//BC
`=>(AM)/MB=(AN)/(NC)` (định lí thales)
`=>(6,5)/x=4/2`
`=>x=3,25`
b)
có QH⊥PH (hình vẽ)
FE⊥PH (hình vẽ)
Suy ra EF//HQ (từ vuông góc đến song song)
Xét tam giác PHQ có EF//HQ (cmt)
`=>(PE)/(PH)=(PF)/(PQ)` (định lí thales)
`=>4/x=5/(5+3,5)`
`=>4/x=5/(8,5)`
`=>x=6,8`
\(a,\left(x-2\right)\left(3x-1\right)=x\left(2-x\right)\)
\(\Leftrightarrow\left(x-2\right)\left(3x-1\right)+x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-1+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{1}{4};2\right\}\)
\(b,\left|2x+3\right|=4x+1\)
\(TH_1:x\ge-\dfrac{3}{2}\)
\(2x+3=4x+1\\ \Leftrightarrow-2x=-2\\ \Leftrightarrow x=1\left(tm\right)\)
\(TH_2:x< -\dfrac{3}{2}\)
\(-2x-3=4x+1\\ \Leftrightarrow-6x=4\Leftrightarrow x=-\dfrac{2}{3}\left(ktm\right)\)
Vậy \(S=\left\{1\right\}\)
\(c,\dfrac{x+1}{3}+1=3-\dfrac{5x}{10}\\ \Leftrightarrow\dfrac{10\left(x+1\right)+30-90+15x}{30}=0\\ \Leftrightarrow10x+10-60+15x=0\\ \Leftrightarrow25x=50\\ \Leftrightarrow x=2\)
Vậy \(S=\left\{2\right\}\)
\(d,\dfrac{1}{x+2}+\dfrac{3}{2-x}=\dfrac{2x-3}{x^2-4}\left(dk:x\ne\pm2\right)\)
\(\Leftrightarrow\dfrac{x-2-x-2-2x+3}{x^2-4}=0\)
\(\Leftrightarrow-2x=1\)
\(\Leftrightarrow x=-\dfrac{1}{2}\left(tmdk\right)\)
Vậy \(S=\left\{-\dfrac{1}{2}\right\}\)
Câu d, Sửa từ dòng 2 :
\(\Leftrightarrow\dfrac{x-2-3x-6-2x+3}{x^2-4}=0\)
\(\Leftrightarrow-4x=5\)
\(\Leftrightarrow x=-\dfrac{5}{4}\left(tm\right)\)
Vậy ...